BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1126 related articles for article (PubMed ID: 29767463)

  • 1. Mechanical and Biological Properties of a Biodegradable Mg-Zn-Ca Porous Alloy.
    Zhang YQ; Li Y; Liu H; Bai J; Bao NR; Zhang Y; He P; Zhao JN; Tao L; Xue F; Zhou GX; Fan GT
    Orthop Surg; 2018 May; 10(2):160-168. PubMed ID: 29767463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of pore size and porosity on cytocompatibility and osteogenic differentiation of porous titanium.
    Yao YT; Yang Y; Ye Q; Cao SS; Zhang XP; Zhao K; Jian Y
    J Mater Sci Mater Med; 2021 Jun; 32(6):72. PubMed ID: 34125310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation and characterization of biomedical highly porous Ti-Nb alloy.
    Ruan J; Yang H; Weng X; Miao J; Zhou K
    J Mater Sci Mater Med; 2016 Apr; 27(4):76. PubMed ID: 26886824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Titanium-35niobium alloy as a potential material for biomedical implants: In vitro study.
    de Andrade DP; de Vasconcellos LM; Carvalho IC; Forte LF; de Souza Santos EL; Prado RF; Santos DR; Cairo CA; Carvalho YR
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():538-44. PubMed ID: 26249625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Additively manufactured biodegradable porous iron.
    Li Y; Jahr H; Lietaert K; Pavanram P; Yilmaz A; Fockaert LI; Leeflang MA; Pouran B; Gonzalez-Garcia Y; Weinans H; Mol JMC; Zhou J; Zadpoor AA
    Acta Biomater; 2018 Sep; 77():380-393. PubMed ID: 29981948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ti6Ta4Sn alloy and subsequent scaffolding for bone tissue engineering.
    Li Y; Xiong J; Wong CS; Hodgson PD; Wen C
    Tissue Eng Part A; 2009 Oct; 15(10):3151-9. PubMed ID: 19351266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication and
    Tang X; Qin Y; Xu X; Guo D; Ye W; Wu W; Li R
    Biomed Res Int; 2019; 2019():2076138. PubMed ID: 31815125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential use of porous titanium-niobium alloy in orthopedic implants: preparation and experimental study of its biocompatibility in vitro.
    Xu J; Weng XJ; Wang X; Huang JZ; Zhang C; Muhammad H; Ma X; Liao QD
    PLoS One; 2013; 8(11):e79289. PubMed ID: 24260188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical properties, corrosion and degradation behaviors, and in vitro cytocompatibility of a biodegradable Zn-5La alloy for bone-implant applications.
    Tong X; Han Y; Zhou R; Zeng J; Wang C; Yuan Y; Zhu L; Huang S; Ma J; Li Y; Wen C; Lin J
    Acta Biomater; 2023 Oct; 169():641-660. PubMed ID: 37541605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Porous Nb-Ti-Ta alloy scaffolds for bone tissue engineering: Fabrication, mechanical properties and in vitro/vivo biocompatibility.
    Liu J; Ruan J; Chang L; Yang H; Ruan W
    Mater Sci Eng C Mater Biol Appl; 2017 Sep; 78():503-512. PubMed ID: 28576015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production and characterization of highly porous biodegradable Mg alloy scaffolds containing Ca, Zn and Co.
    Mutlu I
    Biomed Mater Eng; 2018; 29(1):119-135. PubMed ID: 29254078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis, microstructure and mechanical properties of porous Mg--Zn scaffolds.
    Seyedraoufi ZS; Mirdamadi Sh
    J Mech Behav Biomed Mater; 2013 May; 21():1-8. PubMed ID: 23454363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microstructural, mechanical and corrosion characteristics of heat-treated Mg-1.2Zn-0.5Ca (wt%) alloy for use as resorbable bone fixation material.
    Ibrahim H; Klarner AD; Poorganji B; Dean D; Luo AA; Elahinia M
    J Mech Behav Biomed Mater; 2017 May; 69():203-212. PubMed ID: 28088072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical properties and in vitro biocompatibility of porous zein scaffolds.
    Gong S; Wang H; Sun Q; Xue ST; Wang JY
    Biomaterials; 2006 Jul; 27(20):3793-9. PubMed ID: 16527348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineered bio-nanocomposite magnesium scaffold for bone tissue regeneration.
    Parai R; Bandyopadhyay-Ghosh S
    J Mech Behav Biomed Mater; 2019 Aug; 96():45-52. PubMed ID: 31029994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study on the Mg-Li-Zn ternary alloy system with improved mechanical properties, good degradation performance and different responses to cells.
    Liu Y; Wu Y; Bian D; Gao S; Leeflang S; Guo H; Zheng Y; Zhou J
    Acta Biomater; 2017 Oct; 62():418-433. PubMed ID: 28823717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro and in vivo biological performance of porous Ti alloys prepared by powder metallurgy.
    do Prado RF; Esteves GC; Santos ELS; Bueno DAG; Cairo CAA; Vasconcellos LGO; Sagnori RS; Tessarin FBP; Oliveira FE; Oliveira LD; Villaça-Carvalho MFL; Henriques VAR; Carvalho YR; De Vasconcellos LMR
    PLoS One; 2018; 13(5):e0196169. PubMed ID: 29771925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Porous TiNbZr alloy scaffolds for biomedical applications.
    Wang X; Li Y; Xiong J; Hodgson PD; Wen C
    Acta Biomater; 2009 Nov; 5(9):3616-24. PubMed ID: 19505597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The enhancement of mechanical properties and uniform degradation of electrodeposited Fe-Zn alloys by multilayered design for biodegradable stent applications.
    Xu Y; Wang W; Yu F; Yang S; Yuan Y; Wang Y
    Acta Biomater; 2023 Apr; 161():309-323. PubMed ID: 36858165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of medical Mg-Zn alloys and the effect of different zinc contents on the alloy.
    Hu Y; Guo X; Qiao Y; Wang X; Lin Q
    J Mater Sci Mater Med; 2022 Jan; 33(1):9. PubMed ID: 34982233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 57.