These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 29768137)

  • 1. Organic Amendments, Beneficial Microbes, and Soil Microbiota: Toward a Unified Framework for Disease Suppression.
    Bonanomi G; Lorito M; Vinale F; Woo SL
    Annu Rev Phytopathol; 2018 Aug; 56():1-20. PubMed ID: 29768137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plant Diseases and Management Approaches in Organic Farming Systems.
    van Bruggen AH; Finckh MR
    Annu Rev Phytopathol; 2016 Aug; 54():25-54. PubMed ID: 27215969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soil health paradigms and implications for disease management.
    Larkin RP
    Annu Rev Phytopathol; 2015; 53():199-221. PubMed ID: 26002292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decomposition and organic amendments chemistry explain contrasting effects on plant growth promotion and suppression of Rhizoctonia solani damping off.
    Bonanomi G; Zotti M; Idbella M; Di Silverio N; Carrino L; Cesarano G; Assaeed AM; Abd-ElGawad AM
    PLoS One; 2020; 15(4):e0230925. PubMed ID: 32271811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organic amendments to avocado crops induce suppressiveness and influence the composition and activity of soil microbial communities.
    Bonilla N; Vida C; Martínez-Alonso M; Landa BB; Gaju N; Cazorla FM; de Vicente A
    Appl Environ Microbiol; 2015 May; 81(10):3405-18. PubMed ID: 25769825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organic Amendments for Pathogen and Nematode Control.
    Rosskopf E; Di Gioia F; Hong JC; Pisani C; Kokalis-Burelle N
    Annu Rev Phytopathol; 2020 Aug; 58():277-311. PubMed ID: 32853099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conservation tillage and organic farming induce minor variations in Pseudomonas abundance, their antimicrobial function and soil disease resistance.
    Dennert F; Imperiali N; Staub C; Schneider J; Laessle T; Zhang T; Wittwer R; van der Heijden MGA; Smits THM; Schlaeppi K; Keel C; Maurhofer M
    FEMS Microbiol Ecol; 2018 Aug; 94(8):. PubMed ID: 29701793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prospects for Biological Soilborne Disease Control: Application of Indigenous Versus Synthetic Microbiomes.
    Mazzola M; Freilich S
    Phytopathology; 2017 Mar; 107(3):256-263. PubMed ID: 27898265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and Deployment of Systems-Based Approaches for the Management of Soilborne Plant Pathogens.
    Chellemi DO; Gamliel A; Katan J; Subbarao KV
    Phytopathology; 2016 Mar; 106(3):216-25. PubMed ID: 26574784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compost: its role, mechanism and impact on reducing soil-borne plant diseases.
    Mehta CM; Palni U; Franke-Whittle IH; Sharma AK
    Waste Manag; 2014 Mar; 34(3):607-22. PubMed ID: 24373678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disease Suppressive Soils: New Insights from the Soil Microbiome.
    Schlatter D; Kinkel L; Thomashow L; Weller D; Paulitz T
    Phytopathology; 2017 Nov; 107(11):1284-1297. PubMed ID: 28650266
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterizing the Key Agents in a Disease-Suppressed Soil Managed by Reductive Soil Disinfestation.
    Liu L; Huang X; Zhao J; Zhang J; Cai Z
    Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30737346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chitin- and Keratin-Rich Soil Amendments Suppress Rhizoctonia solani Disease via Changes to the Soil Microbial Community.
    Andreo-Jimenez B; Schilder MT; Nijhuis EH; Te Beest DE; Bloem J; Visser JHM; van Os G; Brolsma K; de Boer W; Postma J
    Appl Environ Microbiol; 2021 May; 87(11):. PubMed ID: 33771785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emerging microbial biocontrol strategies for plant pathogens.
    Syed Ab Rahman SF; Singh E; Pieterse CMJ; Schenk PM
    Plant Sci; 2018 Feb; 267():102-111. PubMed ID: 29362088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Steering soil microbiome to enhance soil system resilience.
    Wang L; Li X
    Crit Rev Microbiol; 2019; 45(5-6):743-753. PubMed ID: 31833440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soil Microbiomes Associated with Verticillium Wilt-Suppressive Broccoli and Chitin Amendments are Enriched with Potential Biocontrol Agents.
    Inderbitzin P; Ward J; Barbella A; Solares N; Izyumin D; Burman P; Chellemi DO; Subbarao KV
    Phytopathology; 2018 Jan; 108(1):31-43. PubMed ID: 28876209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crop management system and carrot genotype affect endophyte composition and Alternaria dauci suppression.
    Abdelrazek S; Simon P; Colley M; Mengiste T; Hoagland L
    PLoS One; 2020; 15(6):e0233783. PubMed ID: 32497087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment and management of soil microbial community structure for disease suppression.
    Mazzola M
    Annu Rev Phytopathol; 2004; 42():35-59. PubMed ID: 15283659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon Source-Dependent Effects of Anaerobic Soil Disinfestation on Soil Microbiome and Suppression of Rhizoctonia solani AG-5 and Pratylenchus penetrans.
    Hewavitharana SS; Mazzola M
    Phytopathology; 2016 Sep; 106(9):1015-28. PubMed ID: 27143411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbiome Networks: A Systems Framework for Identifying Candidate Microbial Assemblages for Disease Management.
    Poudel R; Jumpponen A; Schlatter DC; Paulitz TC; Gardener BB; Kinkel LL; Garrett KA
    Phytopathology; 2016 Oct; 106(10):1083-1096. PubMed ID: 27482625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.