These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 29768462)

  • 1. A comparative study of RNA-Seq and microarray data analysis on the two examples of rectal-cancer patients and Burkitt Lymphoma cells.
    Wolff A; Bayerlová M; Gaedcke J; Kube D; Beißbarth T
    PLoS One; 2018; 13(5):e0197162. PubMed ID: 29768462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparing the normalization methods for the differential analysis of Illumina high-throughput RNA-Seq data.
    Li P; Piao Y; Shon HS; Ryu KH
    BMC Bioinformatics; 2015 Oct; 16():347. PubMed ID: 26511205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of per sample global scaling and per gene normalization methods for differential expression analysis of RNA-seq data.
    Li X; Brock GN; Rouchka EC; Cooper NGF; Wu D; O'Toole TE; Gill RS; Eteleeb AM; O'Brien L; Rai SN
    PLoS One; 2017; 12(5):e0176185. PubMed ID: 28459823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parallel comparison of Illumina RNA-Seq and Affymetrix microarray platforms on transcriptomic profiles generated from 5-aza-deoxy-cytidine treated HT-29 colon cancer cells and simulated datasets.
    Xu X; Zhang Y; Williams J; Antoniou E; McCombie WR; Wu S; Zhu W; Davidson NO; Denoya P; Li E
    BMC Bioinformatics; 2013; 14 Suppl 9(Suppl 9):S1. PubMed ID: 23902433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using microarray-based subtyping methods for breast cancer in the era of high-throughput RNA sequencing.
    Pedersen CB; Nielsen FC; Rossing M; Olsen LR
    Mol Oncol; 2018 Dec; 12(12):2136-2146. PubMed ID: 30289602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integration of RNA-Seq data with heterogeneous microarray data for breast cancer profiling.
    Castillo D; Gálvez JM; Herrera LJ; Román BS; Rojas F; Rojas I
    BMC Bioinformatics; 2017 Nov; 18(1):506. PubMed ID: 29157215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Indel sensitive and comprehensive variant/mutation detection from RNA sequencing data for precision medicine.
    Prodduturi N; Bhagwate A; Kocher JA; Sun Z
    BMC Med Genomics; 2018 Sep; 11(Suppl 3):67. PubMed ID: 30255803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trimming of sequence reads alters RNA-Seq gene expression estimates.
    Williams CR; Baccarella A; Parrish JZ; Kim CC
    BMC Bioinformatics; 2016 Feb; 17():103. PubMed ID: 26911985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance evaluation of lossy quality compression algorithms for RNA-seq data.
    Yu R; Yang W; Wang S
    BMC Bioinformatics; 2020 Jul; 21(1):321. PubMed ID: 32689929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative transcriptome analysis of epithelial and fiber cells in newborn mouse lenses with RNA sequencing.
    Hoang TV; Kumar PK; Sutharzan S; Tsonis PA; Liang C; Robinson ML
    Mol Vis; 2014; 20():1491-517. PubMed ID: 25489224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Silico HLA Typing Using Standard RNA-Seq Sequence Reads.
    Boegel S; Scholtalbers J; Löwer M; Sahin U; Castle JC
    Methods Mol Biol; 2015; 1310():247-58. PubMed ID: 26024640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comprehensive comparison of RNA-Seq-based transcriptome analysis from reads to differential gene expression and cross-comparison with microarrays: a case study in Saccharomyces cerevisiae.
    Nookaew I; Papini M; Pornputtapong N; Scalcinati G; Fagerberg L; Uhlén M; Nielsen J
    Nucleic Acids Res; 2012 Nov; 40(20):10084-97. PubMed ID: 22965124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative evaluation of isoform-level gene expression estimation algorithms for RNA-seq and exon-array platforms.
    Dapas M; Kandpal M; Bi Y; Davuluri RV
    Brief Bioinform; 2017 Mar; 18(2):260-269. PubMed ID: 26944083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Establishment of bioinformatics pipeline for deciphering the biological complexities of fragmented sperm transcriptome.
    Ramya L; Swathi D; Archana SS; Lavanya M; Parthipan S; Selvaraju S
    Anal Biochem; 2021 May; 620():114141. PubMed ID: 33617829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of methods for differential expression analysis on multi-group RNA-seq count data.
    Tang M; Sun J; Shimizu K; Kadota K
    BMC Bioinformatics; 2015 Nov; 16():361. PubMed ID: 26538400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of transcriptome analysis methods with reference genome.
    Liu X; Zhao J; Xue L; Zhao T; Ding W; Han Y; Ye H
    BMC Genomics; 2022 Mar; 23(1):232. PubMed ID: 35337265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. hppRNA-a Snakemake-based handy parameter-free pipeline for RNA-Seq analysis of numerous samples.
    Wang D
    Brief Bioinform; 2018 Jul; 19(4):622-626. PubMed ID: 28096075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of ADGRE5 as discriminating MYC target between Burkitt lymphoma and diffuse large B-cell lymphoma.
    Kleo K; Dimitrova L; Oker E; Tomaszewski N; Berg E; Taruttis F; Engelmann JC; Schwarzfischer P; Reinders J; Spang R; Gronwald W; Oefner PJ; Hummel M
    BMC Cancer; 2019 Apr; 19(1):322. PubMed ID: 30953469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. QuickRNASeq lifts large-scale RNA-seq data analyses to the next level of automation and interactive visualization.
    Zhao S; Xi L; Quan J; Xi H; Zhang Y; von Schack D; Vincent M; Zhang B
    BMC Genomics; 2016 Jan; 17():39. PubMed ID: 26747388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlation between RNA-Seq and microarrays results using TCGA data.
    Chen L; Sun F; Yang X; Jin Y; Shi M; Wang L; Shi Y; Zhan C; Wang Q
    Gene; 2017 Sep; 628():200-204. PubMed ID: 28734892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.