BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 29768479)

  • 1. Construction of a tri-chromatic reporter cell line for the rapid and simple screening of splice-switching oligonucleotides targeting DMD exon 51 using high content screening.
    Shimo T; Tachibana K; Obika S
    PLoS One; 2018; 13(5):e0197373. PubMed ID: 29768479
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and In Vitro Evaluation of Splice-Switching Oligonucleotides Bearing Locked Nucleic Acids, Amido-Bridged Nucleic Acids, and Guanidine-Bridged Nucleic Acids.
    Shimo T; Nakatsuji Y; Tachibana K; Obika S
    Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33805378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and evaluation of locked nucleic acid-based splice-switching oligonucleotides in vitro.
    Shimo T; Tachibana K; Saito K; Yoshida T; Tomita E; Waki R; Yamamoto T; Doi T; Inoue T; Kawakami J; Obika S
    Nucleic Acids Res; 2014 Jul; 42(12):8174-87. PubMed ID: 24935206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel human muscle cell model of Duchenne muscular dystrophy created by CRISPR/Cas9 and evaluation of antisense-mediated exon skipping.
    Shimo T; Hosoki K; Nakatsuji Y; Yokota T; Obika S
    J Hum Genet; 2018 Mar; 63(3):365-375. PubMed ID: 29339778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Short (16-mer) locked nucleic acid splice-switching oligonucleotides restore dystrophin production in Duchenne Muscular Dystrophy myotubes.
    Pires VB; Simões R; Mamchaoui K; Carvalho C; Carmo-Fonseca M
    PLoS One; 2017; 12(7):e0181065. PubMed ID: 28742140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of 2',4'-BNA/LNA-Based Oligonucleotides for Splicing Modulation In Vitro.
    Shimo T; Obika S
    Methods Mol Biol; 2018; 1828():395-411. PubMed ID: 30171556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Designing Effective Antisense Oligonucleotides for Exon Skipping.
    Shimo T; Maruyama R; Yokota T
    Methods Mol Biol; 2018; 1687():143-155. PubMed ID: 29067661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In silico screening based on predictive algorithms as a design tool for exon skipping oligonucleotides in Duchenne muscular dystrophy.
    Echigoya Y; Mouly V; Garcia L; Yokota T; Duddy W
    PLoS One; 2015; 10(3):e0120058. PubMed ID: 25816009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and Application of a Short (16-mer) Locked Nucleic Acid Splice-Switching Oligonucleotide for Dystrophin Production in Duchenne Muscular Dystrophy Myotubes.
    Carvalho C; Carmo-Fonseca M
    Methods Mol Biol; 2020; 2161():37-50. PubMed ID: 32681504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel EGFP reporter cell and mouse models for sensitive imaging and quantification of exon skipping.
    Hara Y; Mizobe Y; Inoue YU; Hashimoto Y; Motohashi N; Masaki Y; Seio K; Takeda S; Nagata T; Wood MJA; Inoue T; Aoki Y
    Sci Rep; 2020 Jun; 10(1):10110. PubMed ID: 32572084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Creation of DMD Muscle Cell Model Using CRISPR-Cas9 Genome Editing to Test the Efficacy of Antisense-Mediated Exon Skipping.
    Maruyama R; Yokota T
    Methods Mol Biol; 2018; 1828():165-171. PubMed ID: 30171541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly sensitive screening of antisense sequences for different types of DMD mutations in patients' urine-derived cells.
    Takizawa H; Takeshita E; Sato M; Shimizu-Motohashi Y; Ishiyama A; Mori-Yoshimura M; Takahashi Y; Komaki H; Aoki Y
    J Neurol Sci; 2021 Apr; 423():117337. PubMed ID: 33610829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro evaluation of novel antisense oligonucleotides is predictive of in vivo exon skipping activity for Duchenne muscular dystrophy.
    Wang Q; Yin H; Camelliti P; Betts C; Moulton H; Lee H; Saleh AF; Gait MJ; Wood MJ
    J Gene Med; 2010 Apr; 12(4):354-64. PubMed ID: 20235089
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and application of bispecific splice-switching oligonucleotides.
    Bestas B; McClorey G; Tedebark U; Moreno PM; Roberts TC; Hammond SM; Smith CI; Wood MJ; Andaloussi SE
    Nucleic Acid Ther; 2014 Feb; 24(1):13-24. PubMed ID: 24506779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tips to Design Effective Splice-Switching Antisense Oligonucleotides for Exon Skipping and Exon Inclusion.
    Maruyama R; Yokota T
    Methods Mol Biol; 2018; 1828():79-90. PubMed ID: 30171536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of therapeutic splice-switching oligonucleotides.
    Disterer P; Kryczka A; Liu Y; Badi YE; Wong JJ; Owen JS; Khoo B
    Hum Gene Ther; 2014 Jul; 25(7):587-98. PubMed ID: 24826963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immortalized Canine Dystrophic Myoblast Cell Lines for Development of Peptide-Conjugated Splice-Switching Oligonucleotides.
    Tone Y; Mamchaoui K; Tsoumpra MK; Hashimoto Y; Terada R; Maruyama R; Gait MJ; Arzumanov AA; McClorey G; Imamura M; Takeda S; Yokota T; Wood MJA; Mouly V; Aoki Y
    Nucleic Acid Ther; 2021 Apr; 31(2):172-181. PubMed ID: 33567244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pro-apoptotic effects of splice-switching oligonucleotides targeting Bcl-x pre-mRNA in human glioma cell lines.
    Li Z; Li Q; Han L; Tian N; Liang Q; Li Y; Zhao X; Du C; Tian Y
    Oncol Rep; 2016 Feb; 35(2):1013-9. PubMed ID: 26718027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct Reprogramming of Human DMD Fibroblasts into Myotubes for In Vitro Evaluation of Antisense-Mediated Exon Skipping and Exons 45-55 Skipping Accompanied by Rescue of Dystrophin Expression.
    Lee JJA; Saito T; Duddy W; Takeda S; Yokota T
    Methods Mol Biol; 2018; 1828():141-150. PubMed ID: 30171539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Challenges of Assessing Exon 53 Skipping of the Human
    Engelbeen S; O'Reilly D; Van De Vijver D; Verhaart I; van Putten M; Hariharan V; Hassler M; Khvorova A; Damha MJ; Aartsma-Rus A
    Nucleic Acid Ther; 2023 Dec; 33(6):348-360. PubMed ID: 38010230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.