These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 29768822)

  • 1. Growth Texture and Mechanism of Zinc Nanowires Produced by Mechanical Elongation of Nanocontacts.
    Yamabe K; Kizuka T
    J Nanosci Nanotechnol; 2018 Jan; 18(1):116-120. PubMed ID: 29768822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical Behavior of InP Twinning Superlattice Nanowires.
    Liu Z; Papadimitriou I; Castillo-Rodríguez M; Wang C; Esteban-Manzanares G; Yuan X; Tan HH; Molina-Aldareguía JM; Llorca J
    Nano Lett; 2019 Jul; 19(7):4490-4497. PubMed ID: 31188620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure and growth mechanism of unusually long fullerene (C60) nanowires.
    Geng J; Zhou W; Skelton P; Yue W; Kinloch IA; Windle AH; Johnson BF
    J Am Chem Soc; 2008 Feb; 130(8):2527-34. PubMed ID: 18251467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alignment control and atomically-scaled heteroepitaxial interface study of GaN nanowires.
    Liu Q; Liu B; Yang W; Yang B; Zhang X; Labbé C; Portier X; An V; Jiang X
    Nanoscale; 2017 Apr; 9(16):5212-5221. PubMed ID: 28397937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The observation of slip phenomena in single crystal Fe samples during in situ micro-mechanical testing through orientation imaging.
    Bhattacharyya D; Wheeler RW; Harrison RP; Edwards L
    Microsc Microanal; 2014 Aug; 20(4):1060-9. PubMed ID: 24964080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ observation of the formation process for free-standing Au nanowires with a scanning electron microscope.
    Aiba A; Kaneko S; Fujii S; Nishino T; Tsukagoshi K; Kiguchi M
    Nanotechnology; 2017 Mar; 28(10):105707. PubMed ID: 28169228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical, Electrical, and Crystallographic Property Dynamics of Bent and Strained Ge/Si Core-Shell Nanowires As Revealed by in situ Transmission Electron Microscopy.
    Zhang C; Kvashnin DG; Bourgeois L; Fernando JFS; Firestein K; Sorokin PB; Fukata N; Golberg D
    Nano Lett; 2018 Nov; 18(11):7238-7246. PubMed ID: 30346785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deformation Behavior and Critical Shear Stress of Copper Nanocontacts Studied by
    Onda K; Kizuka T
    J Nanosci Nanotechnol; 2018 Jan; 18(1):90-94. PubMed ID: 29768817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Post-nucleation evolution of the liquid-solid interface in nanowire growth.
    Maliakkal CB; Jacobsson D; Tornberg M; Dick KA
    Nanotechnology; 2021 Dec; 33(10):. PubMed ID: 34847548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal breakdown of ZnTe nanowires.
    Davami K; Ghassemi HM; Yassar RS; Lee JS; Meyyappan M
    Chemphyschem; 2012 Jan; 13(1):347-52. PubMed ID: 22131283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and characterization of indium-doped ZnO nanowires with periodical single-twin structures.
    Xu L; Su Y; Chen Y; Xiao H; Zhu LA; Zhou Q; Li S
    J Phys Chem B; 2006 Apr; 110(13):6637-42. PubMed ID: 16570966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Individually grown cobalt nanowires as magnetic force microscopy probes.
    Alotaibi S; Samba J; Pokharel S; Lan Y; Uradu K; Afolabi A; Unlu I; Basnet G; Aslan K; Flanders BN; Lisfi A; Ozturk B
    Appl Phys Lett; 2018 Feb; 112(9):092401. PubMed ID: 29531389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Defect-free <110> zinc-blende structured InAs nanowires catalyzed by palladium.
    Xu H; Wang Y; Guo Y; Liao Z; Gao Q; Tan HH; Jagadish C; Zou J
    Nano Lett; 2012 Nov; 12(11):5744-9. PubMed ID: 23030768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlation between anisotropy and lattice distortions in single crystal calcite nanowires grown in confinement.
    Verch A; Côté AS; Darkins R; Kim YY; van de Locht R; Meldrum FC; Duffy DM; Kröger R
    Small; 2014 Jul; 10(13):2697-702. PubMed ID: 24644031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel synthetic methodology for controlling the orientation of zinc oxide nanowires grown on silicon oxide substrates.
    Cho J; Salleh N; Blanco C; Yang S; Lee CJ; Kim YW; Kim J; Liu J
    Nanoscale; 2014 Apr; 6(7):3861-7. PubMed ID: 24584438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Critical Shear Stress of Rhodium Nanocontacts Studied by In Situ High-Resolution Transmission Electron Microscopy.
    Ohko T; Kizuka T
    J Nanosci Nanotechnol; 2015 Jul; 15(7):5180-3. PubMed ID: 26373102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous Growth of Pure Wurtzite and Zinc Blende Nanowires.
    Lehmann S; Wallentin J; Mårtensson EK; Ek M; Deppert K; Dick KA; Borgström MT
    Nano Lett; 2019 Apr; 19(4):2723-2730. PubMed ID: 30888174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transformation from slip to plastic flow deformation mechanism during tensile deformation of zirconium nanocontacts.
    Yamada K; Kizuka T
    Sci Rep; 2017 Feb; 7():42901. PubMed ID: 28218244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anomalous piezoresistance effect in ultrastrained silicon nanowires.
    Lugstein A; Steinmair M; Steiger A; Kosina H; Bertagnolli E
    Nano Lett; 2010 Aug; 10(8):3204-8. PubMed ID: 20698638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Size-dependent fracture mode transition in copper nanowires.
    Peng C; Zhan Y; Lou J
    Small; 2012 Jun; 8(12):1889-94. PubMed ID: 22461261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.