BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 29768914)

  • 1. Exploring Cryptic Pockets Formation in Targets of Pharmaceutical Interest with SWISH.
    Comitani F; Gervasio FL
    J Chem Theory Comput; 2018 Jun; 14(6):3321-3331. PubMed ID: 29768914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding Cryptic Pocket Formation in Protein Targets by Enhanced Sampling Simulations.
    Oleinikovas V; Saladino G; Cossins BP; Gervasio FL
    J Am Chem Soc; 2016 Nov; 138(43):14257-14263. PubMed ID: 27726386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SWISH-X, an Expanded Approach to Detect Cryptic Pockets in Proteins and at Protein-Protein Interfaces.
    Borsatto A; Gianquinto E; Rizzi V; Gervasio FL
    J Chem Theory Comput; 2024 Apr; 20(8):3335-3348. PubMed ID: 38563746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Small Glycols Discover Cryptic Pockets on Proteins for Fragment-Based Approaches.
    Bansia H; Mahanta P; Yennawar NH; Ramakumar S
    J Chem Inf Model; 2021 Mar; 61(3):1322-1333. PubMed ID: 33570386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Niemann-Pick type C disease: a QM/MM study of conformational changes in cholesterol in the NPC1(NTD) and NPC2 binding pockets.
    Elghobashi-Meinhardt N
    Biochemistry; 2014 Oct; 53(41):6603-14. PubMed ID: 25251378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring protein kinase conformation using swarm-enhanced sampling molecular dynamics.
    Atzori A; Bruce NJ; Burusco KK; Wroblowski B; Bonnet P; Bryce RA
    J Chem Inf Model; 2014 Oct; 54(10):2764-75. PubMed ID: 25178116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigating Cryptic Binding Sites by Molecular Dynamics Simulations.
    Kuzmanic A; Bowman GR; Juarez-Jimenez J; Michel J; Gervasio FL
    Acc Chem Res; 2020 Mar; 53(3):654-661. PubMed ID: 32134250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the structural origins of cryptic sites on proteins.
    Beglov D; Hall DR; Wakefield AE; Luo L; Allen KN; Kozakov D; Whitty A; Vajda S
    Proc Natl Acad Sci U S A; 2018 Apr; 115(15):E3416-E3425. PubMed ID: 29581267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CryptoSite: Expanding the Druggable Proteome by Characterization and Prediction of Cryptic Binding Sites.
    Cimermancic P; Weinkam P; Rettenmaier TJ; Bichmann L; Keedy DA; Woldeyes RA; Schneidman-Duhovny D; Demerdash ON; Mitchell JC; Wells JA; Fraser JS; Sali A
    J Mol Biol; 2016 Feb; 428(4):709-719. PubMed ID: 26854760
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cosolvent-Enhanced Sampling and Unbiased Identification of Cryptic Pockets Suitable for Structure-Based Drug Design.
    Schmidt D; Boehm M; McClendon CL; Torella R; Gohlke H
    J Chem Theory Comput; 2019 May; 15(5):3331-3343. PubMed ID: 30998331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid identification of ligand-binding sites by using an assignment-free NMR approach.
    Kodama Y; Takeuchi K; Shimba N; Ishikawa K; Suzuki E; Shimada I; Takahashi H
    J Med Chem; 2013 Nov; 56(22):9342-50. PubMed ID: 24171460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PlayMolecule CrypticScout: Predicting Protein Cryptic Sites Using Mixed-Solvent Molecular Simulations.
    Martinez-Rosell G; Lovera S; Sands ZA; De Fabritiis G
    J Chem Inf Model; 2020 Apr; 60(4):2314-2324. PubMed ID: 32175736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of Potential Small Molecule Binding Pockets in p38α MAP Kinase.
    Gomez-Gutierrez P; Rubio-Martinez J; Perez JJ
    J Chem Inf Model; 2017 Oct; 57(10):2566-2574. PubMed ID: 28872880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of a Novel Inhibitory Allosteric Site in p38α.
    Gomez-Gutierrez P; Campos PM; Vega M; Perez JJ
    PLoS One; 2016; 11(11):e0167379. PubMed ID: 27898710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cryptic Pockets Repository through Pocket Dynamics Tracking and Metadynamics on Essential Dynamics Space: Applications to Mcl-1.
    Benabderrahmane M; Bureau R; Voisin-Chiret AS; Santos JSO
    J Chem Inf Model; 2021 Nov; 61(11):5581-5588. PubMed ID: 34748701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinase in motion: insights into the dynamic nature of p38α by high-pressure NMR spectroscopic studies.
    Nielsen G; Jonker HR; Vajpai N; Grzesiek S; Schwalbe H
    Chembiochem; 2013 Sep; 14(14):1799-806. PubMed ID: 23843149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cryptic binding sites on proteins: definition, detection, and druggability.
    Vajda S; Beglov D; Wakefield AE; Egbert M; Whitty A
    Curr Opin Chem Biol; 2018 Jun; 44():1-8. PubMed ID: 29800865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D matched pairs: integrating ligand- and structure-based knowledge for ligand design and receptor annotation.
    Posy SL; Claus BL; Pokross ME; Johnson SR
    J Chem Inf Model; 2013 Jul; 53(7):1576-88. PubMed ID: 23809058
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational studies of the cholesterol transport between NPC2 and the N-terminal domain of NPC1 (NPC1(NTD)).
    Estiu G; Khatri N; Wiest O
    Biochemistry; 2013 Oct; 52(39):6879-91. PubMed ID: 24001314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accelerated Ligand-Mapping Molecular Dynamics Simulations for the Detection of Recalcitrant Cryptic Pockets and Occluded Binding Sites.
    Tze-Yang Ng J; Tan YS
    J Chem Theory Comput; 2022 Mar; 18(3):1969-1981. PubMed ID: 35175753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.