These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
330 related articles for article (PubMed ID: 29769209)
1. Time-to-Event Bayesian Optimal Interval Design to Accelerate Phase I Trials. Yuan Y; Lin R; Li D; Nie L; Warren KE Clin Cancer Res; 2018 Oct; 24(20):4921-4930. PubMed ID: 29769209 [TBL] [Abstract][Full Text] [Related]
2. TITE-BOIN-ET: Time-to-event Bayesian optimal interval design to accelerate dose-finding based on both efficacy and toxicity outcomes. Takeda K; Morita S; Taguri M Pharm Stat; 2020 May; 19(3):335-349. PubMed ID: 31829517 [TBL] [Abstract][Full Text] [Related]
3. Bayesian Optimal Interval Design: A Simple and Well-Performing Design for Phase I Oncology Trials. Yuan Y; Hess KR; Hilsenbeck SG; Gilbert MR Clin Cancer Res; 2016 Sep; 22(17):4291-301. PubMed ID: 27407096 [TBL] [Abstract][Full Text] [Related]
4. Accuracy, Safety, and Reliability of Novel Phase I Trial Designs. Zhou H; Yuan Y; Nie L Clin Cancer Res; 2018 Sep; 24(18):4357-4364. PubMed ID: 29661774 [TBL] [Abstract][Full Text] [Related]
5. A new pragmatic design for dose escalation in phase 1 clinical trials using an adaptive continual reassessment method. North B; Kocher HM; Sasieni P BMC Cancer; 2019 Jun; 19(1):632. PubMed ID: 31242873 [TBL] [Abstract][Full Text] [Related]
6. Escalation with overdose control using all toxicities and time to event toxicity data in cancer Phase I clinical trials. Chen Z; Cui Y; Owonikoko TK; Wang Z; Li Z; Luo R; Kutner M; Khuri FR; Kowalski J Contemp Clin Trials; 2014 Mar; 37(2):322-32. PubMed ID: 24530487 [TBL] [Abstract][Full Text] [Related]
7. Designing dose-escalation trials with late-onset toxicities using the time-to-event continual reassessment method. Normolle D; Lawrence T J Clin Oncol; 2006 Sep; 24(27):4426-33. PubMed ID: 16983110 [TBL] [Abstract][Full Text] [Related]
8. A utility-based Bayesian optimal interval (U-BOIN) phase I/II design to identify the optimal biological dose for targeted and immune therapies. Zhou Y; Lee JJ; Yuan Y Stat Med; 2019 Dec; 38(28):5299-5316. PubMed ID: 31621952 [TBL] [Abstract][Full Text] [Related]
9. Practical modifications to the time-to-event continual reassessment method for phase I cancer trials with fast patient accrual and late-onset toxicities. Polley MY Stat Med; 2011 Jul; 30(17):2130-43. PubMed ID: 21590790 [TBL] [Abstract][Full Text] [Related]
10. TITE-gBOIN: Time-to-event Bayesian optimal interval design to accelerate dose-finding accounting for toxicity grades. Takeda K; Xia Q; Liu S; Rong A Pharm Stat; 2022 Mar; 21(2):496-506. PubMed ID: 34862715 [TBL] [Abstract][Full Text] [Related]
11. Rolling continual reassessment method with overdose control: An efficient and safe dose escalation design. Zhu J; Sabanés Bové D; Liao Z; Beyer U; Yung G; Sarkar S Contemp Clin Trials; 2021 Aug; 107():106436. PubMed ID: 34000410 [TBL] [Abstract][Full Text] [Related]
12. TITE-BOIN12: A Bayesian phase I/II trial design to find the optimal biological dose with late-onset toxicity and efficacy. Zhou Y; Lin R; Lee JJ; Li D; Wang L; Li R; Yuan Y Stat Med; 2022 May; 41(11):1918-1931. PubMed ID: 35098585 [TBL] [Abstract][Full Text] [Related]
13. Two-stage subgroup-specific time-to-event (2S-Sub-TITE): An adaptive two-stage time-to-toxicity design for subgroup-specific dose finding in phase I oncology trials. McGovern A; Chapple AG; Ma C Pharm Stat; 2022 Nov; 21(6):1138-1148. PubMed ID: 35560864 [TBL] [Abstract][Full Text] [Related]
14. TITE-gBOIN-ET: Time-to-event generalized Bayesian optimal interval design to accelerate dose-finding accounting for ordinal graded efficacy and toxicity outcomes. Takeda K; Yamaguchi Y; Taguri M; Morita S Biom J; 2023 Oct; 65(7):e2200265. PubMed ID: 37309248 [TBL] [Abstract][Full Text] [Related]
15. Handling Incomplete or Late-Onset Toxicities in Early-Phase Dose-Finding Clinical Trials: Current Practice and Future Prospects. Yin Z; Mander AP; de Bono JS; Zheng H; Yap C JCO Precis Oncol; 2024 Jan; 8():e2300441. PubMed ID: 38181316 [TBL] [Abstract][Full Text] [Related]
16. The superiority of the time-to-event continual reassessment method to the rolling six design in pediatric oncology Phase I trials. Zhao L; Lee J; Mody R; Braun TM Clin Trials; 2011 Aug; 8(4):361-9. PubMed ID: 21610004 [TBL] [Abstract][Full Text] [Related]
17. A novel framework of Bayesian optimal interval design for phase I trials with late-onset toxicities. Zhou H; Chen C; Sun L; Zeng Z Contemp Clin Trials; 2021 Jun; 105():106404. PubMed ID: 33862287 [TBL] [Abstract][Full Text] [Related]
18. The 3 + 3 design in dose-finding studies with small sample sizes: Pitfalls and possible remedies. Chiuzan C; Dehbi HM Clin Trials; 2024 Jun; 21(3):350-357. PubMed ID: 38618916 [TBL] [Abstract][Full Text] [Related]
19. Systematic comparison of the statistical operating characteristics of various Phase I oncology designs. Ananthakrishnan R; Green S; Chang M; Doros G; Massaro J; LaValley M Contemp Clin Trials Commun; 2017 Mar; 5():34-48. PubMed ID: 29740620 [TBL] [Abstract][Full Text] [Related]
20. Adaptive design for identifying maximum tolerated dose early to accelerate dose-finding trial. Kojima M BMC Med Res Methodol; 2022 Apr; 22(1):97. PubMed ID: 35382745 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]