BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 29769322)

  • 1. Insights into the regulatory function of the
    Krah A; Zarco-Zavala M; McMillan DGG
    Open Biol; 2018 May; 8(5):. PubMed ID: 29769322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of ATP hydrolysis by thermoalkaliphilic F1Fo-ATP synthase is controlled by the C terminus of the epsilon subunit.
    Keis S; Stocker A; Dimroth P; Cook GM
    J Bacteriol; 2006 Jun; 188(11):3796-804. PubMed ID: 16707672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A specific adaptation in the a subunit of thermoalkaliphilic F1FO-ATP synthase enables ATP synthesis at high pH but not at neutral pH values.
    McMillan DG; Keis S; Dimroth P; Cook GM
    J Biol Chem; 2007 Jun; 282(24):17395-404. PubMed ID: 17434874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of the thermoalkaliphilic F1-ATPase from Caldalkalibacillus thermarum.
    Ferguson SA; Cook GM; Montgomery MG; Leslie AG; Walker JE
    Proc Natl Acad Sci U S A; 2016 Sep; 113(39):10860-5. PubMed ID: 27621435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulatory interplay between proton motive force, ADP, phosphate, and subunit epsilon in bacterial ATP synthase.
    Feniouk BA; Suzuki T; Yoshida M
    J Biol Chem; 2007 Jan; 282(1):764-72. PubMed ID: 17092944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutation Q259L in subunit beta in Bacillus subtilis ATP synthase attenuates ADP-inhibition and decreases fitness in mixed cultures.
    Lapashina AS; Feniouk BA
    Biochem Biophys Res Commun; 2019 Jan; 509(1):102-107. PubMed ID: 30580998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The structural basis for unidirectional rotation of thermoalkaliphilic F1-ATPase.
    Stocker A; Keis S; Vonck J; Cook GM; Dimroth P
    Structure; 2007 Aug; 15(8):904-14. PubMed ID: 17697996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational transitions of subunit epsilon in ATP synthase from thermophilic Bacillus PS3.
    Feniouk BA; Kato-Yamada Y; Yoshida M; Suzuki T
    Biophys J; 2010 Feb; 98(3):434-42. PubMed ID: 20141757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purification and biochemical characterization of the F1Fo-ATP synthase from thermoalkaliphilic Bacillus sp. strain TA2.A1.
    Cook GM; Keis S; Morgan HW; von Ballmoos C; Matthey U; Kaim G; Dimroth P
    J Bacteriol; 2003 Aug; 185(15):4442-9. PubMed ID: 12867453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and function of Mycobacterium-specific components of F-ATP synthase subunits α and ε.
    Bogdanović N; Sundararaman L; Kamariah N; Tyagi A; Bhushan S; Ragunathan P; Shin J; Dick T; Grüber G
    J Struct Biol; 2018 Dec; 204(3):420-434. PubMed ID: 30342092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linking structural features from mitochondrial and bacterial F-type ATP synthases to their distinct mechanisms of ATPase inhibition.
    Krah A
    Prog Biophys Mol Biol; 2015 Oct; 119(1):94-102. PubMed ID: 26140992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coupling H+ transport and ATP synthesis in F1F0-ATP synthases: glimpses of interacting parts in a dynamic molecular machine.
    Fillingame RH
    J Exp Biol; 1997 Jan; 200(Pt 2):217-24. PubMed ID: 9050229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutations on the N-terminal edge of the DELSEED loop in either the α or β subunit of the mitochondrial F1-ATPase enhance ATP hydrolysis in the absence of the central γ rotor.
    La T; Clark-Walker GD; Wang X; Wilkens S; Chen XJ
    Eukaryot Cell; 2013 Nov; 12(11):1451-61. PubMed ID: 24014764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variations of subunit {varepsilon} of the Mycobacterium tuberculosis F1Fo ATP synthase and a novel model for mechanism of action of the tuberculosis drug TMC207.
    Biukovic G; Basak S; Manimekalai MS; Rishikesan S; Roessle M; Dick T; Rao SP; Hunke C; Grüber G
    Antimicrob Agents Chemother; 2013 Jan; 57(1):168-76. PubMed ID: 23089752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The a subunit asymmetry dictates the two opposite rotation directions in the synthesis and hydrolysis of ATP by the mitochondrial ATP synthase.
    Nesci S; Trombetti F; Ventrella V; Pagliarani A
    Med Hypotheses; 2015 Jan; 84(1):53-7. PubMed ID: 25497387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rotor subunits adaptations in ATP synthases from photosynthetic organisms.
    Cheuk A; Meier T
    Biochem Soc Trans; 2021 Apr; 49(2):541-550. PubMed ID: 33890627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Making the right moves.
    Bianchet MA; Amzel LM
    Structure; 2007 Aug; 15(8):885-6. PubMed ID: 17697991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of fully assembled and active Aquifex aeolicus F1FO ATP synthase in Escherichia coli.
    Zhang C; Allegretti M; Vonck J; Langer JD; Marcia M; Peng G; Michel H
    Biochim Biophys Acta; 2014 Jan; 1840(1):34-40. PubMed ID: 24005236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the ATP binding site of the ε subunit from bacterial F-type ATP synthases.
    Krah A; Takada S
    Biochim Biophys Acta; 2016 Apr; 1857(4):332-40. PubMed ID: 26780667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A second shell residue modulates a conserved ATP-binding site with radically different affinities for ATP.
    Krah A; van der Hoeven B; Mestrom L; Tonin F; Knobel KCC; Bond PJ; McMillan DGG
    Biochim Biophys Acta Gen Subj; 2021 Jan; 1865(1):129766. PubMed ID: 33069831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.