These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
465 related articles for article (PubMed ID: 29769378)
1. Food Starch Structure Impacts Gut Microbiome Composition. Warren FJ; Fukuma NM; Mikkelsen D; Flanagan BM; Williams BA; Lisle AT; Ó Cuív P; Morrison M; Gidley MJ mSphere; 2018; 3(3):. PubMed ID: 29769378 [TBL] [Abstract][Full Text] [Related]
2. Effects of pectin on fermentation characteristics, carbohydrate utilization, and microbial community composition in the gastrointestinal tract of weaning pigs. Tian L; Bruggeman G; van den Berg M; Borewicz K; Scheurink AJ; Bruininx E; de Vos P; Smidt H; Schols HA; Gruppen H Mol Nutr Food Res; 2017 Jan; 61(1):. PubMed ID: 27198846 [TBL] [Abstract][Full Text] [Related]
3. Impact of Dietary Resistant Starch on the Human Gut Microbiome, Metaproteome, and Metabolome. Maier TV; Lucio M; Lee LH; VerBerkmoes NC; Brislawn CJ; Bernhardt J; Lamendella R; McDermott JE; Bergeron N; Heinzmann SS; Morton JT; González A; Ackermann G; Knight R; Riedel K; Krauss RM; Schmitt-Kopplin P; Jansson JK mBio; 2017 Oct; 8(5):. PubMed ID: 29042495 [TBL] [Abstract][Full Text] [Related]
4. High amylose wheat starch structures display unique fermentability characteristics, microbial community shifts and enzyme degradation profiles. Bui AT; Williams BA; Hoedt EC; Morrison M; Mikkelsen D; Gidley MJ Food Funct; 2020 Jun; 11(6):5635-5646. PubMed ID: 32537617 [TBL] [Abstract][Full Text] [Related]
5. Effect of potato fiber on survival of Lactobacillus species at simulated gastric conditions and composition of the gut microbiota in vitro. Larsen N; de Souza CB; Krych L; Kot W; Leser TD; Sørensen OB; Blennow A; Venema K; Jespersen L Food Res Int; 2019 Nov; 125():108644. PubMed ID: 31554129 [TBL] [Abstract][Full Text] [Related]
6. Enzymatic Modification of Corn Starch Influences Human Fecal Fermentation Profiles. Dura A; Rose DJ; Rosell CM J Agric Food Chem; 2017 Jun; 65(23):4651-4657. PubMed ID: 28553713 [TBL] [Abstract][Full Text] [Related]
8. Starch and fiber fractions in selected food and feed ingredients affect their small intestinal digestibility and fermentability and their large bowel fermentability in vitro in a canine model. Bednar GE; Patil AR; Murray SM; Grieshop CM; Merchen NR; Fahey GC J Nutr; 2001 Feb; 131(2):276-86. PubMed ID: 11160546 [TBL] [Abstract][Full Text] [Related]
9. The potential of resistant starch as a prebiotic. Zaman SA; Sarbini SR Crit Rev Biotechnol; 2016; 36(3):578-84. PubMed ID: 25582732 [TBL] [Abstract][Full Text] [Related]
10. The Glucoamylase Inhibitor Acarbose Has a Diet-Dependent and Reversible Effect on the Murine Gut Microbiome. Baxter NT; Lesniak NA; Sinani H; Schloss PD; Koropatkin NM mSphere; 2019 Feb; 4(1):. PubMed ID: 30728281 [TBL] [Abstract][Full Text] [Related]
11. Changes to the quantity and processing of starchy foods in a western diet can increase polysaccharides escaping digestion and improve in vitro fermentation variables. Birkett AM; Mathers JC; Jones GP; Walker KZ; Roth MJ; Muir JG Br J Nutr; 2000 Jul; 84(1):63-72. PubMed ID: 10961162 [TBL] [Abstract][Full Text] [Related]
12. Presence of digestible starch impacts Klostermann CE; Endika MF; Kouzounis D; Buwalda PL; de Vos P; Zoetendal EG; Bitter JH; Schols HA Food Funct; 2024 Jan; 15(1):223-235. PubMed ID: 38054370 [TBL] [Abstract][Full Text] [Related]
13. Effect of dietary resistant starch and protein on colonic fermentation and intestinal tumourigenesis in rats. Le Leu RK; Brown IL; Hu Y; Morita T; Esterman A; Young GP Carcinogenesis; 2007 Feb; 28(2):240-5. PubMed ID: 17166881 [TBL] [Abstract][Full Text] [Related]
14. Starch Digestion by Gut Bacteria: Crowdsourcing for Carbs. Cerqueira FM; Photenhauer AL; Pollet RM; Brown HA; Koropatkin NM Trends Microbiol; 2020 Feb; 28(2):95-108. PubMed ID: 31624005 [TBL] [Abstract][Full Text] [Related]
15. Fermentation characteristics of resistant starch, arabinoxylan, and β-glucan and their effects on the gut microbial ecology of pigs: A review. Tiwari UP; Singh AK; Jha R Anim Nutr; 2019 Sep; 5(3):217-226. PubMed ID: 31528722 [TBL] [Abstract][Full Text] [Related]
16. In vitro digestion and fecal fermentation of highly resistant starch rice and its effect on the gut microbiota. Li ZT; Hu GA; Zhu L; Zhao ZC; Yun Jiang ; Gao MJ; Zhan XB Food Chem; 2021 Nov; 361():130095. PubMed ID: 34091400 [TBL] [Abstract][Full Text] [Related]
17. In vitro fecal fermentation of propionylated high-amylose maize starch and its impact on gut microbiota. Xie Z; Wang S; Wang Z; Fu X; Huang Q; Yuan Y; Wang K; Zhang B Carbohydr Polym; 2019 Nov; 223():115069. PubMed ID: 31426996 [TBL] [Abstract][Full Text] [Related]
18. Resistant starch: Implications of dietary inclusion on gut health and growth in pigs: a review. Tan FPY; Beltranena E; Zijlstra RT J Anim Sci Biotechnol; 2021 Nov; 12(1):124. PubMed ID: 34784962 [TBL] [Abstract][Full Text] [Related]
19. Adaptation of the cecal bacterial microbiome of growing pigs in response to resistant starch type 4. Metzler-Zebeli BU; Schmitz-Esser S; Mann E; Grüll D; Molnar T; Zebeli Q Appl Environ Microbiol; 2015 Dec; 81(24):8489-99. PubMed ID: 26431973 [TBL] [Abstract][Full Text] [Related]
20. Effect of resistant starch on the intestinal health of old dogs: fermentation products and histological features of the intestinal mucosa. Peixoto MC; Ribeiro ÉM; Maria APJ; Loureiro BA; di Santo LG; Putarov TC; Yoshitoshi FN; Pereira GT; Sá LRM; Carciofi AC J Anim Physiol Anim Nutr (Berl); 2018 Feb; 102(1):e111-e121. PubMed ID: 28444804 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]