These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 29769443)

  • 1. Acetylation contributes to hypertrophy-caused maturational delay of cardiac energy metabolism.
    Fukushima A; Zhang L; Huqi A; Lam VH; Rawat S; Altamimi T; Wagg CS; Dhaliwal KK; Hornberger LK; Kantor PF; Rebeyka IM; Lopaschuk GD
    JCI Insight; 2018 May; 3(10):. PubMed ID: 29769443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acetylation and succinylation contribute to maturational alterations in energy metabolism in the newborn heart.
    Fukushima A; Alrob OA; Zhang L; Wagg CS; Altamimi T; Rawat S; Rebeyka IM; Kantor PF; Lopaschuk GD
    Am J Physiol Heart Circ Physiol; 2016 Aug; 311(2):H347-63. PubMed ID: 27261364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cardiac hypertrophy in the newborn delays the maturation of fatty acid β-oxidation and compromises postischemic functional recovery.
    Oka T; Lam VH; Zhang L; Keung W; Cadete VJ; Samokhvalov V; Tanner BA; Beker DL; Ussher JR; Huqi A; Jaswal JS; Rebeyka IM; Lopaschuk GD
    Am J Physiol Heart Circ Physiol; 2012 May; 302(9):H1784-94. PubMed ID: 22408020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Obesity-induced lysine acetylation increases cardiac fatty acid oxidation and impairs insulin signalling.
    Alrob OA; Sankaralingam S; Ma C; Wagg CS; Fillmore N; Jaswal JS; Sack MN; Lehner R; Gupta MP; Michelakis ED; Padwal RS; Johnstone DE; Sharma AM; Lopaschuk GD
    Cardiovasc Res; 2014 Sep; 103(4):485-97. PubMed ID: 24966184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cardiac insulin-resistance and decreased mitochondrial energy production precede the development of systolic heart failure after pressure-overload hypertrophy.
    Zhang L; Jaswal JS; Ussher JR; Sankaralingam S; Wagg C; Zaugg M; Lopaschuk GD
    Circ Heart Fail; 2013 Sep; 6(5):1039-48. PubMed ID: 23861485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased ketone body oxidation provides additional energy for the failing heart without improving cardiac efficiency.
    Ho KL; Zhang L; Wagg C; Al Batran R; Gopal K; Levasseur J; Leone T; Dyck JRB; Ussher JR; Muoio DM; Kelly DP; Lopaschuk GD
    Cardiovasc Res; 2019 Sep; 115(11):1606-1616. PubMed ID: 30778524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activating PPARα prevents post-ischemic contractile dysfunction in hypertrophied neonatal hearts.
    Lam VH; Zhang L; Huqi A; Fukushima A; Tanner BA; Onay-Besikci A; Keung W; Kantor PF; Jaswal JS; Rebeyka IM; Lopaschuk GD
    Circ Res; 2015 Jun; 117(1):41-51. PubMed ID: 25977309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Volume overload hypertrophy of the newborn heart slows the maturation of enzymes involved in the regulation of fatty acid metabolism.
    Kantor PF; Robertson MA; Coe JY; Lopaschuk GD
    J Am Coll Cardiol; 1999 May; 33(6):1724-34. PubMed ID: 10334449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mouse SIRT3 attenuates hypertrophy-related lipid accumulation in the heart through the deacetylation of LCAD.
    Chen T; Liu J; Li N; Wang S; Liu H; Li J; Zhang Y; Bu P
    PLoS One; 2015; 10(3):e0118909. PubMed ID: 25748450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acetylation of mitochondrial proteins by GCN5L1 promotes enhanced fatty acid oxidation in the heart.
    Thapa D; Zhang M; Manning JR; Guimarães DA; Stoner MW; O'Doherty RM; Shiva S; Scott I
    Am J Physiol Heart Circ Physiol; 2017 Aug; 313(2):H265-H274. PubMed ID: 28526709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cardiac-specific deficiency of the mitochondrial calcium uniporter augments fatty acid oxidation and functional reserve.
    Altamimi TR; Karwi QG; Uddin GM; Fukushima A; Kwong JQ; Molkentin JD; Lopaschuk GD
    J Mol Cell Cardiol; 2019 Feb; 127():223-231. PubMed ID: 30615880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acetylation control of cardiac fatty acid β-oxidation and energy metabolism in obesity, diabetes, and heart failure.
    Fukushima A; Lopaschuk GD
    Biochim Biophys Acta; 2016 Dec; 1862(12):2211-2220. PubMed ID: 27479696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of CoA and acetyl-CoA in regulating cardiac fatty acid and glucose oxidation.
    Abo Alrob O; Lopaschuk GD
    Biochem Soc Trans; 2014 Aug; 42(4):1043-51. PubMed ID: 25110000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Loss of cardiac carnitine palmitoyltransferase 2 results in rapamycin-resistant, acetylation-independent hypertrophy.
    Pereyra AS; Hasek LY; Harris KL; Berman AG; Damen FW; Goergen CJ; Ellis JM
    J Biol Chem; 2017 Nov; 292(45):18443-18456. PubMed ID: 28916721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fatty acid metabolism assessed by 125I-iodophenyl 9-methylpentadecanoic acid (9MPA) and expression of fatty acid utilization enzymes in volume-overloaded hearts.
    Miyamoto T; Takeishi Y; Tazawa S; Inoue M; Aoyama T; Takahashi H; Arimoto T; Shishido T; Tomoike H; Kubota I
    Eur J Clin Invest; 2004 Mar; 34(3):176-81. PubMed ID: 15025675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glucose is preferentially utilized for biomass synthesis in pressure-overloaded hearts: evidence from fatty acid-binding protein-4 and -5 knockout mice.
    Umbarawan Y; Syamsunarno MRAA; Koitabashi N; Yamaguchi A; Hanaoka H; Hishiki T; Nagahata-Naito Y; Obinata H; Sano M; Sunaga H; Matsui H; Tsushima Y; Suematsu M; Kurabayashi M; Iso T
    Cardiovasc Res; 2018 Jul; 114(8):1132-1144. PubMed ID: 29554241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein lysine acetylation does not contribute to the high rates of fatty acid oxidation seen in the post-ischemic heart.
    Ketema EB; Ahsan M; Zhang L; Karwi QG; Lopaschuk GD
    Sci Rep; 2024 Jan; 14(1):1193. PubMed ID: 38216627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exogenous H
    Sun Y; Tian Z; Liu N; Zhang L; Gao Z; Sun X; Yu M; Wu J; Yang F; Zhao Y; Ren H; Chen H; Zhao D; Wang Y; Dong S; Xu C; Lu F; Zhang W
    J Mol Med (Berl); 2018 Apr; 96(3-4):281-299. PubMed ID: 29349500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recruitment of compensatory pathways to sustain oxidative flux with reduced carnitine palmitoyltransferase I activity characterizes inefficiency in energy metabolism in hypertrophied hearts.
    Sorokina N; O'Donnell JM; McKinney RD; Pound KM; Woldegiorgis G; LaNoue KF; Ballal K; Taegtmeyer H; Buttrick PM; Lewandowski ED
    Circulation; 2007 Apr; 115(15):2033-41. PubMed ID: 17404155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The KLF7/PFKL/ACADL axis modulates cardiac metabolic remodelling during cardiac hypertrophy in male mice.
    Wang C; Qiao S; Zhao Y; Tian H; Yan W; Hou X; Wang R; Zhang B; Yang C; Zhu F; Jiao Y; Jin J; Chen Y; Tian W
    Nat Commun; 2023 Feb; 14(1):959. PubMed ID: 36810848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.