These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

504 related articles for article (PubMed ID: 29769456)

  • 1. Machine Learning-based Texture Analysis of Contrast-enhanced MR Imaging to Differentiate between Glioblastoma and Primary Central Nervous System Lymphoma.
    Kunimatsu A; Kunimatsu N; Yasaka K; Akai H; Kamiya K; Watadani T; Mori H; Abe O
    Magn Reson Med Sci; 2019 Jan; 18(1):44-52. PubMed ID: 29769456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Primary central nervous system lymphoma and atypical glioblastoma: Differentiation using radiomics approach.
    Suh HB; Choi YS; Bae S; Ahn SS; Chang JH; Kang SG; Kim EH; Kim SH; Lee SK
    Eur Radiol; 2018 Sep; 28(9):3832-3839. PubMed ID: 29626238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differentiation of Enhancing Glioma and Primary Central Nervous System Lymphoma by Texture-Based Machine Learning.
    Alcaide-Leon P; Dufort P; Geraldo AF; Alshafai L; Maralani PJ; Spears J; Bharatha A
    AJNR Am J Neuroradiol; 2017 Jun; 38(6):1145-1150. PubMed ID: 28450433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glioblastoma and primary central nervous system lymphoma: Preoperative differentiation by using MRI-based 3D texture analysis.
    Xiao DD; Yan PF; Wang YX; Osman MS; Zhao HY
    Clin Neurol Neurosurg; 2018 Oct; 173():84-90. PubMed ID: 30092408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radiomics features to distinguish glioblastoma from primary central nervous system lymphoma on multi-parametric MRI.
    Kim Y; Cho HH; Kim ST; Park H; Nam D; Kong DS
    Neuroradiology; 2018 Dec; 60(12):1297-1305. PubMed ID: 30232517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine learning based on multi-parametric magnetic resonance imaging to differentiate glioblastoma multiforme from primary cerebral nervous system lymphoma.
    Nakagawa M; Nakaura T; Namimoto T; Kitajima M; Uetani H; Tateishi M; Oda S; Utsunomiya D; Makino K; Nakamura H; Mukasa A; Hirai T; Yamashita Y
    Eur J Radiol; 2018 Nov; 108():147-154. PubMed ID: 30396648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Primary central nervous system lymphoma and glioblastoma differentiation based on conventional magnetic resonance imaging by high-throughput SIFT features.
    Chen Y; Li Z; Wu G; Yu J; Wang Y; Lv X; Ju X; Chen Z
    Int J Neurosci; 2018 Jul; 128(7):608-618. PubMed ID: 29183170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine learning applications for the differentiation of primary central nervous system lymphoma from glioblastoma on imaging: a systematic review and meta-analysis.
    Nguyen AV; Blears EE; Ross E; Lall RR; Ortega-Barnett J
    Neurosurg Focus; 2018 Nov; 45(5):E5. PubMed ID: 30453459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Utility of dynamic contrast-enhanced magnetic resonance imaging for differentiating glioblastoma, primary central nervous system lymphoma and brain metastatic tumor.
    Lu S; Gao Q; Yu J; Li Y; Cao P; Shi H; Hong X
    Eur J Radiol; 2016 Oct; 85(10):1722-1727. PubMed ID: 27666608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Permeability measurement using dynamic susceptibility contrast magnetic resonance imaging enhances differential diagnosis of primary central nervous system lymphoma from glioblastoma.
    Lee JY; Bjørnerud A; Park JE; Lee BE; Kim JH; Kim HS
    Eur Radiol; 2019 Oct; 29(10):5539-5548. PubMed ID: 30877463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glioblastoma and primary central nervous system lymphoma: differentiation using MRI derived first-order texture analysis - a machine learning study.
    Priya S; Ward C; Locke T; Soni N; Maheshwarappa RP; Monga V; Agarwal A; Bathla G
    Neuroradiol J; 2021 Aug; 34(4):320-328. PubMed ID: 33657924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differentiating between Glioblastoma and Primary CNS Lymphoma Using Combined Whole-tumor Histogram Analysis of the Normalized Cerebral Blood Volume and the Apparent Diffusion Coefficient.
    Bao S; Watanabe Y; Takahashi H; Tanaka H; Arisawa A; Matsuo C; Wu R; Fujimoto Y; Tomiyama N
    Magn Reson Med Sci; 2019 Jan; 18(1):53-61. PubMed ID: 29848919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MRI as a diagnostic biomarker for differentiating primary central nervous system lymphoma from glioblastoma: A systematic review and meta-analysis.
    Suh CH; Kim HS; Jung SC; Park JE; Choi CG; Kim SJ
    J Magn Reson Imaging; 2019 Aug; 50(2):560-572. PubMed ID: 30637843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of MR morphologic, diffusion tensor, and perfusion imaging in the classification of brain tumors using machine learning scheme.
    Shrot S; Salhov M; Dvorski N; Konen E; Averbuch A; Hoffmann C
    Neuroradiology; 2019 Jul; 61(7):757-765. PubMed ID: 30949746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diagnostic Accuracy of T1-Weighted Dynamic Contrast-Enhanced-MRI and DWI-ADC for Differentiation of Glioblastoma and Primary CNS Lymphoma.
    Lin X; Lee M; Buck O; Woo KM; Zhang Z; Hatzoglou V; Omuro A; Arevalo-Perez J; Thomas AA; Huse J; Peck K; Holodny AI; Young RJ
    AJNR Am J Neuroradiol; 2017 Mar; 38(3):485-491. PubMed ID: 27932505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diffusion radiomics as a diagnostic model for atypical manifestation of primary central nervous system lymphoma: development and multicenter external validation.
    Kang D; Park JE; Kim YH; Kim JH; Oh JY; Kim J; Kim Y; Kim ST; Kim HS
    Neuro Oncol; 2018 Aug; 20(9):1251-1261. PubMed ID: 29438500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Primary central nervous system lymphoma and atypical glioblastoma: differentiation using the initial area under the curve derived from dynamic contrast-enhanced MR and the apparent diffusion coefficient.
    Choi YS; Lee HJ; Ahn SS; Chang JH; Kang SG; Kim EH; Kim SH; Lee SK
    Eur Radiol; 2017 Apr; 27(4):1344-1351. PubMed ID: 27436023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differentiating glioblastoma multiforme from cerebral lymphoma: application of advanced texture analysis of quantitative apparent diffusion coefficients.
    Mehrnahad M; Rostami S; Kimia F; Kord R; Taheri MS; Rad HS; Haghighatkhah H; Moradi A; Kord A
    Neuroradiol J; 2020 Oct; 33(5):428-436. PubMed ID: 32628089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clinical Value of Vascular Permeability Estimates Using Dynamic Susceptibility Contrast MRI: Improved Diagnostic Performance in Distinguishing Hypervascular Primary CNS Lymphoma from Glioblastoma.
    Lee B; Park JE; Bjørnerud A; Kim JH; Lee JY; Kim HS
    AJNR Am J Neuroradiol; 2018 Aug; 39(8):1415-1422. PubMed ID: 30026384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differentiation between primary CNS lymphoma and glioblastoma: qualitative and quantitative analysis using arterial spin labeling MR imaging.
    You SH; Yun TJ; Choi HJ; Yoo RE; Kang KM; Choi SH; Kim JH; Sohn CH
    Eur Radiol; 2018 Sep; 28(9):3801-3810. PubMed ID: 29619520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.