These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 29769518)

  • 1. A cell-penetrating artificial metalloenzyme regulates a gene switch in a designer mammalian cell.
    Okamoto Y; Kojima R; Schwizer F; Bartolami E; Heinisch T; Matile S; Fussenegger M; Ward TR
    Nat Commun; 2018 May; 9(1):1943. PubMed ID: 29769518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artificial metalloenzymes based on the biotin-avidin technology: enantioselective catalysis and beyond.
    Ward TR
    Acc Chem Res; 2011 Jan; 44(1):47-57. PubMed ID: 20949947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Artificial Metalloenzymes Based on the Biotin-Streptavidin Technology: Enzymatic Cascades and Directed Evolution.
    Liang AD; Serrano-Plana J; Peterson RL; Ward TR
    Acc Chem Res; 2019 Mar; 52(3):585-595. PubMed ID: 30735358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intracellular Unnatural Catalysis Enabled by an Artificial Metalloenzyme.
    Okamoto Y; Kojima R
    Methods Mol Biol; 2021; 2312():287-300. PubMed ID: 34228297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artificial Metalloenzymes Based on the Biotin-Streptavidin Technology: Challenges and Opportunities.
    Heinisch T; Ward TR
    Acc Chem Res; 2016 Sep; 49(9):1711-21. PubMed ID: 27529561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexibility of a biotinylated ligand in artificial metalloenzymes based on streptavidin--an insight from molecular dynamics simulations with classical and ab initio force fields.
    Panek JJ; Ward TR; Jezierska-Mazzarello A; Novic M
    J Comput Aided Mol Des; 2010 Sep; 24(9):719-32. PubMed ID: 20526651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial metalloenzymes for olefin metathesis based on the biotin-(strept)avidin technology.
    Lo C; Ringenberg MR; Gnandt D; Wilson Y; Ward TR
    Chem Commun (Camb); 2011 Nov; 47(44):12065-7. PubMed ID: 21959544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Library design and screening protocol for artificial metalloenzymes based on the biotin-streptavidin technology.
    Mallin H; Hestericová M; Reuter R; Ward TR
    Nat Protoc; 2016 May; 11(5):835-52. PubMed ID: 27031496
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Breaking Symmetry: Engineering Single-Chain Dimeric Streptavidin as Host for Artificial Metalloenzymes.
    Wu S; Zhou Y; Rebelein JG; Kuhn M; Mallin H; Zhao J; Igareta NV; Ward TR
    J Am Chem Soc; 2019 Oct; 141(40):15869-15878. PubMed ID: 31509711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Artificial metalloenzymes based on biotin-avidin technology for the enantioselective reduction of ketones by transfer hydrogenation.
    Letondor C; Humbert N; Ward TR
    Proc Natl Acad Sci U S A; 2005 Mar; 102(13):4683-7. PubMed ID: 15772162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artificial metalloenzymes for enantioselective catalysis based on biotin-avidin.
    Collot J; Gradinaru J; Humbert N; Skander M; Zocchi A; Ward TR
    J Am Chem Soc; 2003 Jul; 125(30):9030-1. PubMed ID: 15369356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A dual anchoring strategy for the localization and activation of artificial metalloenzymes based on the biotin-streptavidin technology.
    Zimbron JM; Heinisch T; Schmid M; Hamels D; Nogueira ES; Schirmer T; Ward TR
    J Am Chem Soc; 2013 Apr; 135(14):5384-8. PubMed ID: 23496309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enantioselective Hydroxylation of Benzylic C(sp
    Serrano-Plana J; Rumo C; Rebelein JG; Peterson RL; Barnet M; Ward TR
    J Am Chem Soc; 2020 Jun; 142(24):10617-10623. PubMed ID: 32450689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical optimization of artificial metalloenzymes based on the biotin-avidin technology: (S)-selective and solvent-tolerant hydrogenation catalysts via the introduction of chiral amino acid spacers.
    Skander M; Malan C; Ivanova A; Ward TR
    Chem Commun (Camb); 2005 Oct; (38):4815-7. PubMed ID: 16193124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial metalloenzymes for enantioselective catalysis based on the noncovalent incorporation of organometallic moieties in a host protein.
    Ward TR
    Chemistry; 2005 Jun; 11(13):3798-804. PubMed ID: 15761912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rationalization of a Streptavidin Based Enantioselective Artificial Suzukiase: An Integrative Computational Approach.
    Tiessler-Sala L; Maréchal JD; Lledós A
    Chemistry; 2024 Jul; 30(39):e202401165. PubMed ID: 38752552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Designed evolution of artificial metalloenzymes: protein catalysts made to order.
    Creus M; Ward TR
    Org Biomol Chem; 2007 Jun; 5(12):1835-44. PubMed ID: 17551630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Directed Evolution of an Artificial Imine Reductase.
    Hestericová M; Heinisch T; Alonso-Cotchico L; Maréchal JD; Vidossich P; Ward TR
    Angew Chem Int Ed Engl; 2018 Feb; 57(7):1863-1868. PubMed ID: 29265726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light-driven electron injection from a biotinylated triarylamine donor to [Ru(diimine)3](2+)-labeled streptavidin.
    Keller SG; Pannwitz A; Schwizer F; Klehr J; Wenger OS; Ward TR
    Org Biomol Chem; 2016 Jul; 14(30):7197-201. PubMed ID: 27411288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering monomeric streptavidin and its ligands with infinite affinity in binding but reversibility in interaction.
    Wu SC; Ng KK; Wong SL
    Proteins; 2009 Nov; 77(2):404-12. PubMed ID: 19425108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.