BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 29770179)

  • 21. Effects of pre-contoured and in situ contoured rods on the mechanical strength and durability of posterior cervical instrumentation: a finite-element analysis and scanning electron microscopy investigation.
    Kim KD; Panchal R; Moldavsky M; Wang W; Bucklen BS
    Spine Deform; 2020 Aug; 8(4):569-576. PubMed ID: 32430793
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rod-Screw Constructs Composed of Dissimilar Metals Do Not Affect Complication Rates in Posterior Fusion Surgery Performed for Adult Spinal Deformity.
    Denduluri SK; Koltsov JCB; Ziino C; Segovia N; McMains C; Falakassa J; Ratliff J; Wood KB; Alamin T; Cheng I; Hu SS
    Clin Spine Surg; 2021 Mar; 34(2):E121-E125. PubMed ID: 33633069
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prospective multicenter assessment of risk factors for rod fracture following surgery for adult spinal deformity.
    Smith JS; Shaffrey E; Klineberg E; Shaffrey CI; Lafage V; Schwab FJ; Protopsaltis T; Scheer JK; Mundis GM; Fu KM; Gupta MC; Hostin R; Deviren V; Kebaish K; Hart R; Burton DC; Line B; Bess S; Ames CP;
    J Neurosurg Spine; 2014 Dec; 21(6):994-1003. PubMed ID: 25325175
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of severity of rod contour on posterior rod failure in the setting of lumbar pedicle subtraction osteotomy (PSO): a biomechanical study.
    Tang JA; Leasure JM; Smith JS; Buckley JM; Kondrashov D; Ames CP
    Neurosurgery; 2013 Feb; 72(2):276-82; discussion 283. PubMed ID: 23149956
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Systematic review and meta-analysis for the impact of rod materials and sizes in the surgical treatment of adult spine deformity.
    Bowden D; Michielli A; Merrill M; Will S
    Spine Deform; 2022 Nov; 10(6):1265-1278. PubMed ID: 35904725
    [TBL] [Abstract][Full Text] [Related]  

  • 26. How do additional rods reduce loads on the primary rods in adult spinal instrumentation with pedicle subtraction osteotomy?
    Wang X; Aubin CE; Armstrong R; Rawlinson J
    Clin Biomech (Bristol, Avon); 2022 Mar; 93():105590. PubMed ID: 35240416
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Titanium vs cobalt chromium: what is the best rod material to enhance adolescent idiopathic scoliosis correction with sublaminar bands?
    Angelliaume A; Ferrero E; Mazda K; Le Hanneur M; Accabled F; de Gauzy JS; Ilharreborde B
    Eur Spine J; 2017 Jun; 26(6):1732-1738. PubMed ID: 27817137
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cobalt chromium-Titanium rods versus Titanium-Titanium rods for treatment of adolescent idiopathic scoliosis; which type of rod has better postoperative outcomes?
    Etemadifar MR; Andalib A; Rahimian A; Nodushan SMHT
    Rev Assoc Med Bras (1992); 2018 Dec; 64(12):1085-1090. PubMed ID: 30569984
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Comparative Biomechanical Analysis of Various Rod Configurations Following Anterior Column Realignment and Pedicle Subtraction Osteotomy.
    Mumtaz M; Mendoza J; Vosoughi AS; Unger AS; Goel VK
    Neurospine; 2021 Sep; 18(3):587-596. PubMed ID: 34610690
    [TBL] [Abstract][Full Text] [Related]  

  • 30. How does a novel monoplanar pedicle screw perform biomechanically relative to monoaxial and polyaxial designs?
    Schroerlucke SR; Steklov N; Mundis GM; Marino JF; Akbarnia BA; Eastlack RK
    Clin Orthop Relat Res; 2014 Sep; 472(9):2826-32. PubMed ID: 24920048
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultrasonic Structural Health Monitoring to Assess the Integrity of Spinal Growing Rods In Vitro.
    Oetgen ME; Goodley A; Yoo B; Pines DJ; Hsieh AH
    Spine Deform; 2016 Jan; 4(1):65-69. PubMed ID: 27852503
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Effect of Rod Pattern, Outrigger, and Multiple Screw-Rod Constructs for Surgical Stabilization of the 3-Column Destabilized Cervical Spine - A Biomechanical Analysis and Introduction of a Novel Technique.
    Hartmann S; Thomé C; Abramovic A; Lener S; Schmoelz W; Koller J; Koller H
    Neurospine; 2020 Sep; 17(3):610-629. PubMed ID: 33022166
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparative analysis of posterior fusion constructs as treatments for middle and posterior column injuries: an in vitro biomechanical investigation.
    Doulgeris JJ; Aghayev K; Gonzalez-Blohm SA; Del Valle M; Waddell J; Lee WE; Vrionis FD
    Clin Biomech (Bristol, Avon); 2013 Jun; 28(5):483-9. PubMed ID: 23707137
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biomechanical assessment of a PEEK rod system for semi-rigid fixation of lumbar fusion constructs.
    Gornet MF; Chan FW; Coleman JC; Murrell B; Nockels RP; Taylor BA; Lanman TH; Ochoa JA
    J Biomech Eng; 2011 Aug; 133(8):081009. PubMed ID: 21950902
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biomechanical Analysis of a Long-Segment Fusion in a Lumbar Spine-A Finite Element Model Study.
    Natarajan RN; Watanabe K; Hasegawa K
    J Biomech Eng; 2018 Sep; 140(9):. PubMed ID: 29801167
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biomechanical stability of transverse connectors in the setting of a thoracic pedicle subtraction osteotomy.
    Lehman RA; Kang DG; Wagner SC; Paik H; Cardoso MJ; Bernstock JD; Dmitriev AE
    Spine J; 2015 Jul; 15(7):1629-35. PubMed ID: 25771755
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Radiographic outcome and complications after single-level lumbar extended pedicle subtraction osteotomy for fixed sagittal malalignment: a retrospective analysis of 55 adult spinal deformity patients with a minimum 2-year follow-up.
    Buell TJ; Nguyen JH; Mazur MD; Mullin JP; Garces J; Taylor DG; Yen CP; Shaffrey ME; Shaffrey CI; Smith JS
    J Neurosurg Spine; 2018 Nov; 30(2):242-252. PubMed ID: 30497176
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Postoperative magnetic resonance imaging artifact with cobalt-chromium versus titanium spinal instrumentation: presented at the 2013 Joint Spine Section Meeting. Clinical article.
    Ahmad FU; Sidani C; Fourzali R; Wang MY
    J Neurosurg Spine; 2013 Nov; 19(5):629-36. PubMed ID: 24053373
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biomechanical study of rod stress after pedicle subtraction osteotomy versus anterior column reconstruction: A finite element study.
    Januszewski J; Beckman JM; Harris JE; Turner AW; Yen CP; Uribe JS
    Surg Neurol Int; 2017; 8():207. PubMed ID: 28966814
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Instrumentation failure following pedicle subtraction osteotomy: the role of rod material, diameter, and multi-rod constructs.
    Luca A; Ottardi C; Sasso M; Prosdocimo L; La Barbera L; Brayda-Bruno M; Galbusera F; Villa T
    Eur Spine J; 2017 Mar; 26(3):764-770. PubMed ID: 27858238
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.