These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 29770330)

  • 1. The Prediction of Drug-Disease Correlation Based on Gene Expression Data.
    Cui H; Zhang M; Yang Q; Li X; Liebman M; Yu Y; Xie L
    Biomed Res Int; 2018; 2018():4028473. PubMed ID: 29770330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of synergistic anti-cancer drug combinations based on drug target network and drug induced gene expression profiles.
    Li X; Xu Y; Cui H; Huang T; Wang D; Lian B; Li W; Qin G; Chen L; Xie L
    Artif Intell Med; 2017 Nov; 83():35-43. PubMed ID: 28583437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Network Propagation Predicts Drug Synergy in Cancers.
    Li H; Li T; Quang D; Guan Y
    Cancer Res; 2018 Sep; 78(18):5446-5457. PubMed ID: 30054332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simple gene set-based method accurately predicts the synergy of drug pairs.
    Hsu YC; Chiu YC; Chen Y; Hsiao TH; Chuang EY
    BMC Syst Biol; 2016 Aug; 10 Suppl 3(Suppl 3):66. PubMed ID: 27585722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The transcriptomic response of cells to a drug combination is more than the sum of the responses to the monotherapies.
    Diaz JE; Ahsen ME; Schaffter T; Chen X; Realubit RB; Karan C; Califano A; Losic B; Stolovitzky G
    Elife; 2020 Sep; 9():. PubMed ID: 32945258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systems modelling of the EGFR-PYK2-c-Met interaction network predicts and prioritizes synergistic drug combinations for triple-negative breast cancer.
    Shin SY; Müller AK; Verma N; Lev S; Nguyen LK
    PLoS Comput Biol; 2018 Jun; 14(6):e1006192. PubMed ID: 29920512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unlocking the therapeutic potential of drug combinations through synergy prediction using graph transformer networks.
    Alam W; Tayara H; Chong KT
    Comput Biol Med; 2024 Mar; 170():108007. PubMed ID: 38242015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DRSPRING: Graph convolutional network (GCN)-Based drug synergy prediction utilizing drug-induced gene expression profile.
    Han J; Kang MJ; Lee S
    Comput Biol Med; 2024 May; 174():108436. PubMed ID: 38643597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergistic Drug Combination Prediction by Integrating Multiomics Data in Deep Learning Models.
    Zhang T; Zhang L; Payne PRO; Li F
    Methods Mol Biol; 2021; 2194():223-238. PubMed ID: 32926369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A community computational challenge to predict the activity of pairs of compounds.
    Bansal M; Yang J; Karan C; Menden MP; Costello JC; Tang H; Xiao G; Li Y; Allen J; Zhong R; Chen B; Kim M; Wang T; Heiser LM; Realubit R; Mattioli M; Alvarez MJ; Shen Y; ; Gallahan D; Singer D; Saez-Rodriguez J; Xie Y; Stolovitzky G; Califano A;
    Nat Biotechnol; 2014 Dec; 32(12):1213-22. PubMed ID: 25419740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Aiming for zero blindness].
    Nakazawa T
    Nippon Ganka Gakkai Zasshi; 2015 Mar; 119(3):168-93; discussion 194. PubMed ID: 25854109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep learning-based transcriptome data classification for drug-target interaction prediction.
    Xie L; He S; Song X; Bo X; Zhang Z
    BMC Genomics; 2018 Sep; 19(Suppl 7):667. PubMed ID: 30255785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diverse approaches to predicting drug-induced liver injury using gene-expression profiles.
    Sumsion GR; Bradshaw MS; Beales JT; Ford E; Caryotakis GRG; Garrett DJ; LeBaron ED; Nwosu IO; Piccolo SR
    Biol Direct; 2020 Jan; 15(1):1. PubMed ID: 31941542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large-scale exploration and analysis of drug combinations.
    Li P; Huang C; Fu Y; Wang J; Wu Z; Ru J; Zheng C; Guo Z; Chen X; Zhou W; Zhang W; Li Y; Chen J; Lu A; Wang Y
    Bioinformatics; 2015 Jun; 31(12):2007-16. PubMed ID: 25667546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene expression analysis in clear cell renal cell carcinoma using gene set enrichment analysis for biostatistical management.
    Maruschke M; Reuter D; Koczan D; Hakenberg OW; Thiesen HJ
    BJU Int; 2011 Jul; 108(2 Pt 2):E29-35. PubMed ID: 21435154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Representing high throughput expression profiles via perturbation barcodes reveals compound targets.
    Filzen TM; Kutchukian PS; Hermes JD; Li J; Tudor M
    PLoS Comput Biol; 2017 Feb; 13(2):e1005335. PubMed ID: 28182661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell-specific prediction and application of drug-induced gene expression profiles.
    Hodos R; Zhang P; Lee HC; Duan Q; Wang Z; Clark NR; Ma'ayan A; Wang F; Kidd B; Hu J; Sontag D; Dudley J
    Pac Symp Biocomput; 2018; 23():32-43. PubMed ID: 29218867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An enhanced Petri-net model to predict synergistic effects of pairwise drug combinations from gene microarray data.
    Jin G; Zhao H; Zhou X; Wong ST
    Bioinformatics; 2011 Jul; 27(13):i310-6. PubMed ID: 21685086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A modular approach for integrative analysis of large-scale gene-expression and drug-response data.
    Kutalik Z; Beckmann JS; Bergmann S
    Nat Biotechnol; 2008 May; 26(5):531-9. PubMed ID: 18464786
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.