These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 29770351)

  • 1. A Microfluidic Device for Massively Parallel, Whole-lifespan Imaging of Single Fission Yeast Cells.
    Jones SK; Spivey EC; Rybarski JR; Finkelstein IJ
    Bio Protoc; 2018 Apr; 8(7):. PubMed ID: 29770351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D-printed microfluidic microdissector for high-throughput studies of cellular aging.
    Spivey EC; Xhemalce B; Shear JB; Finkelstein IJ
    Anal Chem; 2014 Aug; 86(15):7406-12. PubMed ID: 24992972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An aging-independent replicative lifespan in a symmetrically dividing eukaryote.
    Spivey EC; Jones SK; Rybarski JR; Saifuddin FA; Finkelstein IJ
    Elife; 2017 Jan; 6():. PubMed ID: 28139976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A computer vision and residual neural network (ResNet) combined method for automated and accurate yeast replicative aging analysis of high-throughput microfluidic single-cell images.
    Xiao Q; Wang Y; Fan J; Yi Z; Hong H; Xie X; Huang QA; Fu J; Ouyang J; Zhao X; Wang Z; Zhu Z
    Biosens Bioelectron; 2024 Jan; 244():115807. PubMed ID: 37948914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-throughput analysis of yeast replicative aging using a microfluidic system.
    Jo MC; Liu W; Gu L; Dang W; Qin L
    Proc Natl Acad Sci U S A; 2015 Jul; 112(30):9364-9. PubMed ID: 26170317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A high-throughput microfluidic diploid yeast long-term culturing (DYLC) chip capable of bud reorientation and concerted daughter dissection for replicative lifespan determination.
    Wang Y; Zhu Z; Liu K; Xiao Q; Geng Y; Xu F; Ouyang S; Zheng K; Fan Y; Jin N; Zhao X; Marchisio MA; Pan D; Huang QA
    J Nanobiotechnology; 2022 Mar; 20(1):171. PubMed ID: 35361237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of Microfluidic Devices for Continuously Monitoring Yeast Aging.
    O'Laughlin R; Forrest E; Hasty J; Hao N
    Bio Protoc; 2023 Aug; 13(15):e4782. PubMed ID: 37575396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A microfluidic device for the hydrodynamic immobilisation of living fission yeast cells for super-resolution imaging.
    Bell L; Seshia A; Lando D; Laue E; Palayret M; Lee SF; Klenerman D
    Sens Actuators B Chem; 2014 Mar; 192():36-41. PubMed ID: 25844024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Whole lifespan microscopic observation of budding yeast aging through a microfluidic dissection platform.
    Lee SS; Avalos Vizcarra I; Huberts DH; Lee LP; Heinemann M
    Proc Natl Acad Sci U S A; 2012 Mar; 109(13):4916-20. PubMed ID: 22421136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single cell analysis of yeast replicative aging using a new generation of microfluidic device.
    Zhang Y; Luo C; Zou K; Xie Z; Brandman O; Ouyang Q; Li H
    PLoS One; 2012; 7(11):e48275. PubMed ID: 23144860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic technologies for yeast replicative lifespan studies.
    Chen KL; Crane MM; Kaeberlein M
    Mech Ageing Dev; 2017 Jan; 161(Pt B):262-269. PubMed ID: 27015709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A fast microfluidic temperature control device for studying microtubule dynamics in fission yeast.
    Velve-Casquillas G; Costa J; Carlier-Grynkorn F; Mayeux A; Tran PT
    Methods Cell Biol; 2010; 97():185-201. PubMed ID: 20719272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visualizing single rod-shaped fission yeast vertically in micro-sized holes on agarose pad made by soft lithography.
    Wang L; Tran PT
    Methods Cell Biol; 2014; 120():227-34. PubMed ID: 24484668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Yeast Replicator: A High-Throughput Multiplexed Microfluidics Platform for Automated Measurements of Single-Cell Aging.
    Liu P; Young TZ; Acar M
    Cell Rep; 2015 Oct; 13(3):634-644. PubMed ID: 26456818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uncovering Natural Longevity Alleles from Intercrossed Pools of Aging Fission Yeast Cells.
    Ellis DA; Mustonen V; Rodríguez-López M; Rallis C; Malecki M; Jeffares DC; Bähler J
    Genetics; 2018 Oct; 210(2):733-744. PubMed ID: 30072377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using Microfluidic Devices to Measure Lifespan and Cellular Phenotypes in Single Budding Yeast Cells.
    Zou K; Ren DS; Ou-Yang Q; Li H; Zheng J
    J Vis Exp; 2017 Mar; (121):. PubMed ID: 28448036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aging, mortality, and the fast growth trade-off of Schizosaccharomyces pombe.
    Nakaoka H; Wakamoto Y
    PLoS Biol; 2017 Jun; 15(6):e2001109. PubMed ID: 28632741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TORC1 signaling inhibition by rapamycin and caffeine affect lifespan, global gene expression, and cell proliferation of fission yeast.
    Rallis C; Codlin S; Bähler J
    Aging Cell; 2013 Aug; 12(4):563-73. PubMed ID: 23551936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic Platforms for Yeast-Based Aging Studies.
    Jo MC; Qin L
    Small; 2016 Nov; 12(42):5787-5801. PubMed ID: 27717149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical genetic screen in fission yeast reveals roles for vacuolar acidification, mitochondrial fission, and cellular GMP levels in lifespan extension.
    Stephan J; Franke J; Ehrenhofer-Murray AE
    Aging Cell; 2013 Aug; 12(4):574-83. PubMed ID: 23521895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.