BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 29770594)

  • 1. Functional optical coherence tomography of neurovascular coupling interactions in the retina.
    Son T; Alam M; Toslak D; Wang B; Lu Y; Yao X
    J Biophotonics; 2018 Dec; 11(12):e201800089. PubMed ID: 29770594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical coherence tomography angiography of stimulus evoked hemodynamic responses in individual retinal layers.
    Son T; Wang B; Thapa D; Lu Y; Chen Y; Cao D; Yao X
    Biomed Opt Express; 2016 Aug; 7(8):3151-62. PubMed ID: 27570706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plexus-specific effect of flicker-light stimulation on the retinal microvasculature assessed with optical coherence tomography angiography.
    Kallab M; Hommer N; Tan B; Pfister M; Schlatter A; Werkmeister RM; Chua J; Schmidl D; Schmetterer L; Garhöfer G
    Am J Physiol Heart Circ Physiol; 2021 Jan; 320(1):H23-H28. PubMed ID: 33275537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of Structural Retinal Layer Alterations in Retinitis Pigmentosa.
    Yavuzer K; Citirik M; Yavuzer B
    Rom J Ophthalmol; 2023; 67(4):326-336. PubMed ID: 38239428
    [No Abstract]   [Full Text] [Related]  

  • 5. In vivo optoretinography of phototransduction activation and energy metabolism in retinal photoreceptors.
    Ma G; Son T; Kim TH; Yao X
    J Biophotonics; 2021 May; 14(5):e202000462. PubMed ID: 33547871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of chorioretinal layers in rhesus macaques using spectral-domain optical coherence tomography and high-resolution histological sections.
    Yiu G; Wang Z; Munevar C; Tieu E; Shibata B; Wong B; Cunefare D; Farsiu S; Roberts J; Thomasy SM
    Exp Eye Res; 2018 Mar; 168():69-76. PubMed ID: 29352993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Concurrent OCT imaging of stimulus evoked retinal neural activation and hemodynamic responses.
    Son T; Wang B; Lu Y; Chen Y; Cao D; Yao X
    Proc SPIE Int Soc Opt Eng; 2017; 10045():. PubMed ID: 29225397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intrinsic optical signal imaging of retinal physiology: a review.
    Yao X; Wang B
    J Biomed Opt; 2015 Sep; 20(9):090901. PubMed ID: 26405819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative hemodynamic analysis of cerebral blood flow and neurovascular coupling using optical coherence tomography angiography.
    Shin P; Choi W; Joo J; Oh WY
    J Cereb Blood Flow Metab; 2019 Oct; 39(10):1983-1994. PubMed ID: 29757059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retinal layer segmentation in a cohort of healthy children via optical coherence tomography.
    Runge AK; Remlinger J; Abegg M; Ferrazzini T; Brügger D; Weigt-Usinger K; Lücke T; Gold R; Salmen A
    PLoS One; 2022; 17(11):e0276958. PubMed ID: 36327296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping the thickness of retinal layers using Spectralis spectral domain optical coherence tomography in Indian eyes.
    Najeeb S; Ganne P; Damagatla M; Chaitanya G; Krishnappa NC
    Indian J Ophthalmol; 2022 Aug; 70(8):2990-2997. PubMed ID: 35918959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stimulus-induced changes of reflectivity detected by optical coherence tomography in macaque retina.
    Suzuki W; Tsunoda K; Hanazono G; Tanifuji M
    Invest Ophthalmol Vis Sci; 2013 Sep; 54(9):6345-54. PubMed ID: 23982841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo optical coherence tomography of stimulus-evoked intrinsic optical signals in mouse retinas.
    Wang B; Lu Y; Yao X
    J Biomed Opt; 2016 Sep; 21(9):96010. PubMed ID: 27653936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impacts of age and sex on retinal layer thicknesses measured by spectral domain optical coherence tomography with Spectralis.
    Nieves-Moreno M; Martínez-de-la-Casa JM; Morales-Fernández L; Sánchez-Jean R; Sáenz-Francés F; García-Feijoó J
    PLoS One; 2018; 13(3):e0194169. PubMed ID: 29522565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlations among multifocal electroretinography and optical coherence tomography findings in patients with Parkinson's disease.
    Unlu M; Gulmez Sevim D; Gultekin M; Karaca C
    Neurol Sci; 2018 Mar; 39(3):533-541. PubMed ID: 29349656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of intrinsic optical signal recording with split spectrum optical coherence tomography.
    Thapa D; Wang B; Lu Y; Son T; Yao X
    J Mod Opt; 2017; 64(17):1800-1807. PubMed ID: 29129961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo imaging of intrinsic optical signals in chicken retina with functional optical coherence tomography.
    Moayed AA; Hariri S; Choh V; Bizheva K
    Opt Lett; 2011 Dec; 36(23):4575-7. PubMed ID: 22139247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Influence of Silicone Oil on the Ganglion Cell Complex After Pars Plana Vitrectomy for Rhegmatogenous Retinal Detachment.
    Raczyńska D; Mitrosz K; Raczyńska K; Glasner L
    Curr Pharm Des; 2018 Dec; 24(29):3476-3493. PubMed ID: 30101697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of the retinal posterior pole in dominant optic atrophy by spectral-domain optical coherence tomography and microperimetry.
    Cesareo M; Ciuffoletti E; Martucci A; Sebastiani J; Sorge RP; Lamantea E; Garavaglia B; Ricci F; Cusumano A; Nucci C; Brancati F
    PLoS One; 2017; 12(3):e0174560. PubMed ID: 28358911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiparametric optical coherence tomography imaging of the inner retinal hemodynamic response to visual stimulation.
    Radhakrishnan H; Srinivasan VJ
    J Biomed Opt; 2013 Aug; 18(8):86010. PubMed ID: 23955476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.