These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 29770774)

  • 1. I-V characteristics of graphene nanoribbon/h-BN heterojunctions and resonant tunneling.
    Wakai T; Sakamoto S; Tomiya M
    J Phys Condens Matter; 2018 Jul; 30(26):265302. PubMed ID: 29770774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of substitutional defects on resonant tunneling diodes based on armchair graphene and boron nitride nanoribbons lateral heterojunctions.
    Sanaeepur M
    Beilstein J Nanotechnol; 2020; 11():688-694. PubMed ID: 32395399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultranarrow heterojunctions of armchair-graphene nanoribbons as resonant-tunnelling devices.
    Sánchez-Ochoa F; Zhang J; Du Y; Huang Z; Canto G; Springborg M; Cocoletzi GH
    Phys Chem Chem Phys; 2019 Dec; 21(45):24867-24875. PubMed ID: 31517350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of molybdenum disulfide nanoribbon on quantum transport of graphene.
    Gao G; Li Z; Chen M; Xie Y; Wang Y
    J Phys Condens Matter; 2017 Nov; 29(43):435001. PubMed ID: 28829340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The rectifying and negative differential resistance effects in graphene/h-BN nanoribbon heterojunctions.
    An Y; Zhang M; Wu D; Wang T; Jiao Z; Xia C; Fu Z; Wang K
    Phys Chem Chem Phys; 2016 Oct; 18(40):27976-27980. PubMed ID: 27711625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electronic transport through zigzag/armchair graphene nanoribbon heterojunctions.
    Li XF; Wang LL; Chen KQ; Luo Y
    J Phys Condens Matter; 2012 Mar; 24(9):095801. PubMed ID: 22317831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermoelectric properties of armchair graphene nanoribbons with array characteristics.
    Kuo DMT
    RSC Adv; 2024 Jan; 14(5):3513-3518. PubMed ID: 38259995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorption of ammonia on ZrO
    Ayesh AI; El-Muraikhi MD
    J Mol Model; 2022 Dec; 29(1):15. PubMed ID: 36544072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In-plane graphene/h-BN/graphene heterostructures with nanopores for electrical detection of DNA nucleotides.
    Kiakojouri A; Frank I; Nadimi E
    Phys Chem Chem Phys; 2021 Nov; 23(44):25126-25135. PubMed ID: 34729571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene Nanoribbon Field Effect Transistor Simulations for the Detection of Sugar Molecules: Semi-Empirical Modeling.
    Wasfi A; Al Hamarna A; Al Shehhi OMH; Al Ameri HFM; Awwad F
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spin-dependent transport for armchair-edge graphene nanoribbons between ferromagnetic leads.
    Zhou B; Chen X; Zhou B; Ding KH; Zhou G
    J Phys Condens Matter; 2011 Apr; 23(13):135304. PubMed ID: 21415476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of ZnO dimers on the thermoelectric performance of armchair graphene nanoribbons.
    Ajeel FN; Ahmed AB
    J Mol Model; 2023 Apr; 29(5):145. PubMed ID: 37067639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spintronic Transport in Armchair Graphene Nanoribbon with Ferromagnetic Electrodes: Half-Metallic Properties.
    Liu H; Kondo H; Ohno T
    Nanoscale Res Lett; 2016 Dec; 11(1):456. PubMed ID: 27739053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spin filtering and magneto-resistive effect at the graphene/h-BN ribbon interface.
    Dubois SM; Declerck X; Charlier JC; Payne MC
    ACS Nano; 2013 May; 7(5):4578-85. PubMed ID: 23641732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybridization effects on the out-of-plane electron tunneling properties of monolayers: is h-BN more conductive than graphene?
    Zhong X; Amorim RG; Rocha AR; Pandey R
    Nanotechnology; 2014 Aug; 25(34):345703. PubMed ID: 25101928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blue emission at atomically sharp 1D heterojunctions between graphene and h-BN.
    Kim G; Ma KY; Park M; Kim M; Jeon J; Song J; Barrios-Vargas JE; Sato Y; Lin YC; Suenaga K; Roche S; Yoo S; Sohn BH; Jeon S; Shin HS
    Nat Commun; 2020 Oct; 11(1):5359. PubMed ID: 33097718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical Investigation of the Interfaces and Mechanisms of Induced Spin Polarization of 1D Narrow Zigzag Graphene- and h-BN Nanoribbons on a SrO-Terminated LSMO(001) Surface.
    Avramov P; Kuzubov AA; Kuklin AV; Lee H; Kovaleva EA; Sakai S; Entani S; Naramoto H; Sorokin PB
    J Phys Chem A; 2017 Jan; 121(3):680-689. PubMed ID: 28075136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First principles investigation on armchair zinc oxide nanoribbons as uric acid sensors.
    Singh P; Randhawa DKK; Tarun ; Choudhary BC; Walia GK; Kaur N
    J Mol Model; 2019 Dec; 26(1):4. PubMed ID: 31834483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum transport simulations of graphene nanoribbon devices using Dirac equation calibrated with tight-binding π-bond model.
    Chin SK; Lam KT; Seah D; Liang G
    Nanoscale Res Lett; 2012 Feb; 7(1):114. PubMed ID: 22325480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A current-voltage model for Schottky-barrier graphene-based transistors.
    Jiménez D
    Nanotechnology; 2008 Aug; 19(34):345204. PubMed ID: 21730642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.