These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
380 related articles for article (PubMed ID: 29770864)
1. Agrobacterium-Mediated Transformation of Yeast and Fungi. Hooykaas PJJ; van Heusden GPH; Niu X; Reza Roushan M; Soltani J; Zhang X; van der Zaal BJ Curr Top Microbiol Immunol; 2018; 418():349-374. PubMed ID: 29770864 [TBL] [Abstract][Full Text] [Related]
2. DNA repair genes RAD52 and SRS2, a cell wall synthesis regulator gene SMI1, and the membrane sterol synthesis scaffold gene ERG28 are important in efficient Agrobacterium-mediated yeast transformation with chromosomal T-DNA. Ohmine Y; Satoh Y; Kiyokawa K; Yamamoto S; Moriguchi K; Suzuki K BMC Microbiol; 2016 Apr; 16():58. PubMed ID: 27038795 [TBL] [Abstract][Full Text] [Related]
3. Increased Agrobacterium-mediated transformation of Saccharomyces cerevisiae after deletion of the yeast ADA2 gene. Roushan MR; Shao S; Poledri I; Hooykaas PJJ; van Heusden GPH Lett Appl Microbiol; 2022 Feb; 74(2):228-237. PubMed ID: 34816457 [TBL] [Abstract][Full Text] [Related]
4. VirD4-independent transformation by CloDF13 evidences an unknown factor required for the genetic colonization of plants via Agrobacterium. Escudero J; Den Dulk-Ras A; Regensburg-Tuïnk TJ; Hooykaas PJ Mol Microbiol; 2003 Feb; 47(4):891-901. PubMed ID: 12581347 [TBL] [Abstract][Full Text] [Related]
5. Genetic requirements for the targeted integration of Agrobacterium T-DNA in Saccharomyces cerevisiae. van Attikum H; Hooykaas PJ Nucleic Acids Res; 2003 Feb; 31(3):826-32. PubMed ID: 12560477 [TBL] [Abstract][Full Text] [Related]
6. Recognition of the Agrobacterium tumefaciens VirE2 translocation signal by the VirB/D4 transport system does not require VirE1. Vergunst AC; van Lier MC; den Dulk-Ras A; Hooykaas PJ Plant Physiol; 2003 Nov; 133(3):978-88. PubMed ID: 14551327 [TBL] [Abstract][Full Text] [Related]
7. Analysis of Vir protein translocation from Agrobacterium tumefaciens using Saccharomyces cerevisiae as a model: evidence for transport of a novel effector protein VirE3. Schrammeijer B; den Dulk-Ras A; Vergunst AC; Jurado Jácome E; Hooykaas PJ Nucleic Acids Res; 2003 Feb; 31(3):860-8. PubMed ID: 12560481 [TBL] [Abstract][Full Text] [Related]
8. The translocated virulence protein VirD5 causes DNA damage and mutation during Zhang X; Hooykaas MJG; van Heusden GP; Hooykaas PJJ Sci Adv; 2022 Nov; 8(46):eadd3912. PubMed ID: 36383666 [TBL] [Abstract][Full Text] [Related]
9. Agrobacterium may delay plant nonhomologous end-joining DNA repair via XRCC4 to favor T-DNA integration. Vaghchhipawala ZE; Vasudevan B; Lee S; Morsy MR; Mysore KS Plant Cell; 2012 Oct; 24(10):4110-23. PubMed ID: 23064322 [TBL] [Abstract][Full Text] [Related]
10. Enhanced targeted integration mediated by translocated I-SceI during the Agrobacterium mediated transformation of yeast. Rolloos M; Hooykaas PJ; van der Zaal BJ Sci Rep; 2015 Feb; 5():8345. PubMed ID: 25662162 [TBL] [Abstract][Full Text] [Related]
11. The putative Agrobacterium transcriptional activator-like virulence protein VirD5 may target T-complex to prevent the degradation of coat proteins in the plant cell nucleus. Wang Y; Peng W; Zhou X; Huang F; Shao L; Luo M New Phytol; 2014 Sep; 203(4):1266-1281. PubMed ID: 24865527 [TBL] [Abstract][Full Text] [Related]
12. Ku80 plays a role in non-homologous recombination but is not required for T-DNA integration in Arabidopsis. Gallego ME; Bleuyard JY; Daoudal-Cotterell S; Jallut N; White CI Plant J; 2003 Sep; 35(5):557-65. PubMed ID: 12940949 [TBL] [Abstract][Full Text] [Related]
13. Direct visualization of Agrobacterium-delivered VirE2 in recipient cells. Li X; Yang Q; Tu H; Lim Z; Pan SQ Plant J; 2014 Feb; 77(3):487-95. PubMed ID: 24299048 [TBL] [Abstract][Full Text] [Related]
14. Agrobacterium tumefaciens-mediated transformation of yeast. Piers KL; Heath JD; Liang X; Stephens KM; Nester EW Proc Natl Acad Sci U S A; 1996 Feb; 93(4):1613-8. PubMed ID: 8643679 [TBL] [Abstract][Full Text] [Related]
15. Involvement of Rad52 in T-DNA circle formation during Agrobacterium tumefaciens-mediated transformation of Saccharomyces cerevisiae. Rolloos M; Dohmen MH; Hooykaas PJ; van der Zaal BJ Mol Microbiol; 2014 Mar; 91(6):1240-51. PubMed ID: 24460832 [TBL] [Abstract][Full Text] [Related]
16. Agrobacterium T-DNA integration into the plant genome can occur without the activity of key non-homologous end-joining proteins. Park SY; Vaghchhipawala Z; Vasudevan B; Lee LY; Shen Y; Singer K; Waterworth WM; Zhang ZJ; West CE; Mysore KS; Gelvin SB Plant J; 2015 Mar; 81(6):934-46. PubMed ID: 25641249 [TBL] [Abstract][Full Text] [Related]
17. VirD5 is required for efficient Agrobacterium infection and interacts with Arabidopsis VIP2. Wang Y; Zhang S; Huang F; Zhou X; Chen Z; Peng W; Luo M New Phytol; 2018 Jan; 217(2):726-738. PubMed ID: 29084344 [TBL] [Abstract][Full Text] [Related]
18. Interaction of the virulence protein VirF of Agrobacterium tumefaciens with plant homologs of the yeast Skp1 protein. Schrammeijer B; Risseeuw E; Pansegrau W; Regensburg-Tuïnk TJ; Crosby WL; Hooykaas PJ Curr Biol; 2001 Feb; 11(4):258-62. PubMed ID: 11250154 [TBL] [Abstract][Full Text] [Related]
19. The carboxy-terminus of VirE2 from Agrobacterium tumefaciens is required for its transport to host cells by the virB-encoded type IV transport system. Simone M; McCullen CA; Stahl LE; Binns AN Mol Microbiol; 2001 Sep; 41(6):1283-93. PubMed ID: 11580834 [TBL] [Abstract][Full Text] [Related]