These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 29771182)

  • 1. Ciliogenesis is reciprocally regulated by PPARA and NR1H4/FXR through controlling autophagy in vitro and in vivo.
    Liu ZQ; Lee JN; Son M; Lim JY; Dutta RK; Maharjan Y; Kwak S; Oh GT; Byun K; Choe SK; Park R
    Autophagy; 2018; 14(6):1011-1027. PubMed ID: 29771182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nutrient-sensing nuclear receptors coordinate autophagy.
    Lee JM; Wagner M; Xiao R; Kim KH; Feng D; Lazar MA; Moore DD
    Nature; 2014 Dec; 516(7529):112-5. PubMed ID: 25383539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduced peroxisome proliferator-activated receptor-α and bile acid nuclear receptor NR1H4/FXR may affect the hepatic immune microenvironment of biliary atresia.
    Ma Y; Lu L; Tan K; Li Z; Guo T; Wu Y; Wu W; Zheng L; Fan F; Mo J; Gong Z
    Front Immunol; 2022; 13():875593. PubMed ID: 36090996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reciprocal regulation of cilia and autophagy via the MTOR and proteasome pathways.
    Wang S; Livingston MJ; Su Y; Dong Z
    Autophagy; 2015 Apr; 11(4):607-16. PubMed ID: 25906314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of Liver Energy Balance by the Nuclear Receptors Farnesoid X Receptor and Peroxisome Proliferator Activated Receptor α.
    Kim KH; Moore DD
    Dig Dis; 2017; 35(3):203-209. PubMed ID: 28249296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autophagy promotes primary ciliogenesis by removing OFD1 from centriolar satellites.
    Tang Z; Lin MG; Stowe TR; Chen S; Zhu M; Stearns T; Franco B; Zhong Q
    Nature; 2013 Oct; 502(7470):254-7. PubMed ID: 24089205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NEK9 regulates primary cilia formation by acting as a selective autophagy adaptor for MYH9/myosin IIA.
    Yamamoto Y; Chino H; Tsukamoto S; Ode KL; Ueda HR; Mizushima N
    Nat Commun; 2021 Jun; 12(1):3292. PubMed ID: 34078910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptional regulation of autophagy by an FXR-CREB axis.
    Seok S; Fu T; Choi SE; Li Y; Zhu R; Kumar S; Sun X; Yoon G; Kang Y; Zhong W; Ma J; Kemper B; Kemper JK
    Nature; 2014 Dec; 516(7529):108-11. PubMed ID: 25383523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MicroRNA-194 inhibition improves dietary-induced non-alcoholic fatty liver disease in mice through targeting on FXR.
    Nie H; Song C; Wang D; Cui S; Ren T; Cao Z; Liu Q; Chen Z; Chen X; Zhou Y
    Biochim Biophys Acta Mol Basis Dis; 2017 Dec; 1863(12):3087-3094. PubMed ID: 28951211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonhematopoietic Peroxisome Proliferator-Activated Receptor-α Protects Against Cardiac Injury and Enhances Survival in Experimental Polymicrobial Sepsis.
    Standage SW; Waworuntu RL; Delaney MA; Maskal SM; Bennion BG; Duffield JS; Parks WC; Liles WC; McGuire JK
    Crit Care Med; 2016 Aug; 44(8):e594-603. PubMed ID: 26757163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nutrient-sensing nuclear receptors PPARα and FXR control liver energy balance.
    Preidis GA; Kim KH; Moore DD
    J Clin Invest; 2017 Apr; 127(4):1193-1201. PubMed ID: 28287408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of carbohydrate metabolism by the farnesoid X receptor.
    Stayrook KR; Bramlett KS; Savkur RS; Ficorilli J; Cook T; Christe ME; Michael LF; Burris TP
    Endocrinology; 2005 Mar; 146(3):984-91. PubMed ID: 15564327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Keratin 23 Is a Peroxisome Proliferator-Activated Receptor Alpha-Dependent, MYC-Amplified Oncogene That Promotes Hepatocyte Proliferation.
    Kim D; Brocker CN; Takahashi S; Yagai T; Kim T; Xie G; Wang H; Qu A; Gonzalez FJ
    Hepatology; 2019 Jul; 70(1):154-167. PubMed ID: 30697791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional interaction between autophagy and ciliogenesis.
    Pampliega O; Orhon I; Patel B; Sridhar S; Díaz-Carretero A; Beau I; Codogno P; Satir BH; Satir P; Cuervo AM
    Nature; 2013 Oct; 502(7470):194-200. PubMed ID: 24089209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of autophagy suppresses sertraline-mediated primary ciliogenesis in retinal pigment epithelium cells.
    Kim ES; Shin JH; Park SJ; Jo YK; Kim JS; Kang IH; Nam JB; Chung DY; Cho Y; Lee EH; Chang JW; Cho DH
    PLoS One; 2015; 10(2):e0118190. PubMed ID: 25671433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The HOPS complex subunit VPS39 controls ciliogenesis through autophagy.
    Iaconis D; Crina C; Brillante S; Indrieri A; Morleo M; Franco B
    Hum Mol Genet; 2020 Apr; 29(6):1018-1029. PubMed ID: 32077937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiplicity of nuclear receptor activation by PFOA and PFOS in primary human and rodent hepatocytes.
    Bjork JA; Butenhoff JL; Wallace KB
    Toxicology; 2011 Oct; 288(1-3):8-17. PubMed ID: 21723365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dexamethasone induction of hypertension and diabetes is PPAR-alpha dependent in LDL receptor-null mice.
    Bernal-Mizrachi C; Weng S; Feng C; Finck BN; Knutsen RH; Leone TC; Coleman T; Mecham RP; Kelly DP; Semenkovich CF
    Nat Med; 2003 Aug; 9(8):1069-75. PubMed ID: 12847522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glucose deprivation induces primary cilium formation through mTORC1 inactivation.
    Takahashi K; Nagai T; Chiba S; Nakayama K; Mizuno K
    J Cell Sci; 2018 Jan; 131(1):. PubMed ID: 29180513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Autophagy and primary cilia: dual interplay.
    Pampliega O; Cuervo AM
    Curr Opin Cell Biol; 2016 Apr; 39():1-7. PubMed ID: 26826446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.