BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 29771316)

  • 21. Microbial characterization of toluene-degrading denitrifying consortia obtained from terrestrial and marine ecosystems.
    An YJ; Joo YH; Hong IY; Ryu HW; Cho KS
    Appl Microbiol Biotechnol; 2004 Oct; 65(5):611-9. PubMed ID: 15278317
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The synergism of temperature, pH and growth phases on heavy metal biosorption by two environmental isolates.
    Fan J; Onal Okyay T; Frigi Rodrigues D
    J Hazard Mater; 2014 Aug; 279():236-43. PubMed ID: 25064261
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cupriavidus metallidurans: evolution of a metal-resistant bacterium.
    von Rozycki T; Nies DH
    Antonie Van Leeuwenhoek; 2009 Aug; 96(2):115-39. PubMed ID: 18830684
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Variation in genomic islands contribute to genome plasticity in Cupriavidus metallidurans.
    Van Houdt R; Monsieurs P; Mijnendonckx K; Provoost A; Janssen A; Mergeay M; Leys N
    BMC Genomics; 2012 Mar; 13():111. PubMed ID: 22443515
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Anaerobic degradation of benzene, toluene, ethylbenzene, and xylene compounds by Dechloromonas strain RCB.
    Chakraborty R; O'Connor SM; Chan E; Coates JD
    Appl Environ Microbiol; 2005 Dec; 71(12):8649-55. PubMed ID: 16332859
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced selenate accumulation in Cupriavidus metallidurans CH34 does not trigger a detoxification pathway.
    Avoscan L; Carrière M; Proux O; Sarret G; Degrouard J; Covès J; Gouget B
    Appl Environ Microbiol; 2009 Apr; 75(7):2250-2. PubMed ID: 19201966
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Physicochemical surface properties of Cupriavidus metallidurans CH34 and Pseudomonas putida mt2 under cadmium stress.
    Shamim S; Rehman A
    J Basic Microbiol; 2014 Apr; 54(4):306-14. PubMed ID: 23564035
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The use of nucleic acid based stable isotope probing to identify the microorganisms responsible for anaerobic benzene and toluene biodegradation.
    Cupples AM
    J Microbiol Methods; 2011 May; 85(2):83-91. PubMed ID: 21356251
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The ABC-transporter AtmA is involved in nickel and cobalt resistance of Cupriavidus metallidurans strain CH34.
    Mikolay A; Nies DH
    Antonie Van Leeuwenhoek; 2009 Aug; 96(2):183-91. PubMed ID: 19132541
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fertilization stimulates anaerobic fuel degradation of antarctic soils by denitrifying microorganisms.
    Powell SM; Ferguson SH; Snape I; Siciliano SD
    Environ Sci Technol; 2006 Mar; 40(6):2011-7. PubMed ID: 16570629
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Proteomic responses to gold(iii)-toxicity in the bacterium Cupriavidus metallidurans CH34.
    Zammit CM; Weiland F; Brugger J; Wade B; Winderbaum LJ; Nies DH; Southam G; Hoffmann P; Reith F
    Metallomics; 2016 Nov; 8(11):1204-1216. PubMed ID: 27757465
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Petrophilic, Fe(III) Reducing Exoelectrogen
    Venkidusamy K; Hari AR; Megharaj M
    Front Microbiol; 2018; 9():349. PubMed ID: 29593662
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The anaerobic biodegradation of diethanolamine by a nitrate reducing bacterium.
    Knapp JS; Jenkey ND; Townsley CC
    Biodegradation; 1996 Jun; 7(3):183-9. PubMed ID: 8782390
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Anaerobic BTEX degradation in soil bioaugmented with mixed consortia under nitrate reducing conditions.
    Dou J; Liu X; Hu Z
    J Environ Sci (China); 2008; 20(5):585-92. PubMed ID: 18575112
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Anaerobic degradation of ethylbenzene and other aromatic hydrocarbons by new denitrifying bacteria.
    Rabus R; Widdel F
    Arch Microbiol; 1995 Feb; 163(2):96-103. PubMed ID: 7710331
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Uranium interaction with two multi-resistant environmental bacteria: Cupriavidus metallidurans CH34 and Rhodopseudomonas palustris.
    Llorens I; Untereiner G; Jaillard D; Gouget B; Chapon V; Carriere M
    PLoS One; 2012; 7(12):e51783. PubMed ID: 23251623
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantification of denitrification by strain T1 during anaerobic degradation of toluene.
    Evans PJ; Ling W; Palleroni NJ; Young LY
    Appl Microbiol Biotechnol; 1992 Apr; 37(1):136-40. PubMed ID: 1368498
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transcriptional activation of MerR family promoters in Cupriavidus metallidurans CH34.
    Julian DJ; Kershaw CJ; Brown NL; Hobman JL
    Antonie Van Leeuwenhoek; 2009 Aug; 96(2):149-59. PubMed ID: 19005773
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stoichiometry and kinetics of microbial toluene degradation under denitrifying conditions.
    Jørgensen C; Flyvbjerg J; Arvin E; Jensen BK
    Biodegradation; 1995 Jun; 6(2):147-56. PubMed ID: 7772941
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Loss of Mobile Genomic Islands in Metal-Resistant, Hydrogen-Oxidizing Cupriavidus metallidurans.
    Große C; Kohl TA; Niemann S; Herzberg M; Nies DH
    Appl Environ Microbiol; 2022 Feb; 88(4):e0204821. PubMed ID: 34910578
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.