These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 29771316)

  • 41. Mobilization of selenite by Ralstonia metallidurans CH34.
    Roux M; Sarret G; Pignot-Paintrand I; Fontecave M; Coves J
    Appl Environ Microbiol; 2001 Feb; 67(2):769-73. PubMed ID: 11157242
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Contribution of extracytoplasmic function sigma factors to transition metal homeostasis in Cupriavidus metallidurans strain CH34.
    Grosse C; Friedrich S; Nies DH
    J Mol Microbiol Biotechnol; 2007; 12(3-4):227-40. PubMed ID: 17587871
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biodegradation and detoxification of chloronitroaromatic pollutant by Cupriavidus.
    Tiwari J; Naoghare P; Sivanesan S; Bafana A
    Bioresour Technol; 2017 Jan; 223():184-191. PubMed ID: 27792928
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of isobutanol on toluene biodegradation in nitrate amended, sulfate amended and methanogenic enrichment microcosms.
    Jayamani I; Cupples AM
    Biodegradation; 2013 Sep; 24(5):657-63. PubMed ID: 23224907
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Aerobic and anaerobic toluene degradation by a newly isolated denitrifying bacterium, Thauera sp. strain DNT-1.
    Shinoda Y; Sakai Y; Uenishi H; Uchihashi Y; Hiraishi A; Yukawa H; Yurimoto H; Kato N
    Appl Environ Microbiol; 2004 Mar; 70(3):1385-92. PubMed ID: 15006757
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Deletion of the zupT gene for a zinc importer influences zinc pools in Cupriavidus metallidurans CH34.
    Herzberg M; Bauer L; Nies DH
    Metallomics; 2014 Mar; 6(3):421-36. PubMed ID: 24407051
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Biodegradation of benzene, toluene, and other aromatic compounds by Pseudmonas sp. D8.
    Chang BV; Wu WB; Yuan SY
    Chemosphere; 1997 Dec; 35(12):2807-15. PubMed ID: 9415978
    [TBL] [Abstract][Full Text] [Related]  

  • 48. ArsR arsenic-resistance regulatory protein from Cupriavidus metallidurans CH34.
    Zhang YB; Monchy S; Greenberg B; Mergeay M; Gang O; Taghavi S; van der Lelie D
    Antonie Van Leeuwenhoek; 2009 Aug; 96(2):161-70. PubMed ID: 19238575
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Contaminant concentration versus flow velocity: drivers of biodegradation and microbial growth in groundwater model systems.
    Grösbacher M; Eckert D; Cirpka OA; Griebler C
    Biodegradation; 2018 Jun; 29(3):211-232. PubMed ID: 29492777
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Heavy metal resistance in Cupriavidus metallidurans CH34 is governed by an intricate transcriptional network.
    Monsieurs P; Moors H; Van Houdt R; Janssen PJ; Janssen A; Coninx I; Mergeay M; Leys N
    Biometals; 2011 Dec; 24(6):1133-51. PubMed ID: 21706166
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Precipitation of silver-thiosulfate complex and immobilization of silver by Cupriavidus metallidurans CH34.
    Ledrich ML; Stemmler S; Laval-Gilly P; Foucaud L; Falla J
    Biometals; 2005 Dec; 18(6):643-50. PubMed ID: 16388403
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Bioelectrochemical BTEX removal at different voltages: assessment of the degradation and characterization of the microbial communities.
    Daghio M; Espinoza Tofalos A; Leoni B; Cristiani P; Papacchini M; Jalilnejad E; Bestetti G; Franzetti A
    J Hazard Mater; 2018 Jan; 341():120-127. PubMed ID: 28772251
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Metabolites detected during biodegradation of 13C6-benzene in nitrate-reducing and methanogenic enrichment cultures.
    Ulrich AC; Beller HR; Edwards EA
    Environ Sci Technol; 2005 Sep; 39(17):6681-91. PubMed ID: 16190227
    [TBL] [Abstract][Full Text] [Related]  

  • 54. New mobile genetic elements in Cupriavidus metallidurans CH34, their possible roles and occurrence in other bacteria.
    Van Houdt R; Monchy S; Leys N; Mergeay M
    Antonie Van Leeuwenhoek; 2009 Aug; 96(2):205-26. PubMed ID: 19390985
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The multi metal-resistant bacterium
    Clavero-León C; Ruiz D; Cillero J; Orlando J; González B
    PeerJ; 2021; 9():e11373. PubMed ID: 34040892
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Novel Electrophototrophic Bacterium Rhodopseudomonas palustris Strain RP2, Exhibits Hydrocarbonoclastic Potential in Anaerobic Environments.
    Venkidusamy K; Megharaj M
    Front Microbiol; 2016; 7():1071. PubMed ID: 27462307
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biodegradation of methane, benzene, and toluene by a consortium MBT14 enriched from a landfill cover soil.
    Lee EH; Park H; Cho KS
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(3):273-8. PubMed ID: 23245302
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Contributions of five secondary metal uptake systems to metal homeostasis of Cupriavidus metallidurans CH34.
    Kirsten A; Herzberg M; Voigt A; Seravalli J; Grass G; Scherer J; Nies DH
    J Bacteriol; 2011 Sep; 193(18):4652-63. PubMed ID: 21742896
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Anaerobic Benzene Mineralization by Nitrate-Reducing and Sulfate-Reducing Microbial Consortia Enriched From the Same Site: Comparison of Community Composition and Degradation Characteristics.
    Keller AH; Kleinsteuber S; Vogt C
    Microb Ecol; 2018 May; 75(4):941-953. PubMed ID: 29124312
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Amine- and carboxyl- quantum dots affect membrane integrity of bacterium Cupriavidus metallidurans CH34.
    Slaveykova VI; Startchev K; Roberts J
    Environ Sci Technol; 2009 Jul; 43(13):5117-22. PubMed ID: 19673316
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.