These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 29771335)
1. Loss of fragile X protein FMRP impairs homeostatic synaptic downscaling through tumor suppressor p53 and ubiquitin E3 ligase Nedd4-2. Lee KY; Jewett KA; Chung HJ; Tsai NP Hum Mol Genet; 2018 Aug; 27(16):2805-2816. PubMed ID: 29771335 [TBL] [Abstract][Full Text] [Related]
2. The tumor suppressor p53 guides GluA1 homeostasis through Nedd4-2 during chronic elevation of neuronal activity. Jewett KA; Zhu J; Tsai NP J Neurochem; 2015 Oct; 135(2):226-33. PubMed ID: 26250624 [TBL] [Abstract][Full Text] [Related]
3. Dysregulation and restoration of homeostatic network plasticity in fragile X syndrome mice. Jewett KA; Lee KY; Eagleman DE; Soriano S; Tsai NP Neuropharmacology; 2018 Aug; 138():182-192. PubMed ID: 29890190 [TBL] [Abstract][Full Text] [Related]
4. Analysis of FMR1 deletion in a subpopulation of post-mitotic neurons in mouse cortex and hippocampus. Amiri A; Sanchez-Ortiz E; Cho W; Birnbaum SG; Xu J; McKay RM; Parada LF Autism Res; 2014 Feb; 7(1):60-71. PubMed ID: 24408886 [TBL] [Abstract][Full Text] [Related]
5. C2-lacking isoform of Nedd4-2 regulates excitatory synaptic strength through GluA1 ubiquitination-independent mechanisms. Zhu J; Lee KY; Jong TT; Tsai NP J Neurochem; 2019 Nov; 151(3):289-300. PubMed ID: 31357244 [TBL] [Abstract][Full Text] [Related]
6. ER stress-induced modulation of neural activity and seizure susceptibility is impaired in a fragile X syndrome mouse model. Liu DC; Lee KY; Lizarazo S; Cook JK; Tsai NP Neurobiol Dis; 2021 Oct; 158():105450. PubMed ID: 34303799 [TBL] [Abstract][Full Text] [Related]
7. Altered structural and functional synaptic plasticity with motor skill learning in a mouse model of fragile X syndrome. Padmashri R; Reiner BC; Suresh A; Spartz E; Dunaevsky A J Neurosci; 2013 Dec; 33(50):19715-23. PubMed ID: 24336735 [TBL] [Abstract][Full Text] [Related]
8. The fragile X mutation impairs homeostatic plasticity in human neurons by blocking synaptic retinoic acid signaling. Zhang Z; Marro SG; Zhang Y; Arendt KL; Patzke C; Zhou B; Fair T; Yang N; Südhof TC; Wernig M; Chen L Sci Transl Med; 2018 Aug; 10(452):. PubMed ID: 30068571 [TBL] [Abstract][Full Text] [Related]
9. Involvement of Phosphodiesterase 2A Activity in the Pathophysiology of Fragile X Syndrome. Maurin T; Melancia F; Jarjat M; Castro L; Costa L; Delhaye S; Khayachi A; Castagnola S; Mota E; Di Giorgio A; Servadio M; Drozd M; Poupon G; Schiavi S; Sardone L; Azoulay S; Ciranna L; Martin S; Vincent P; Trezza V; Bardoni B Cereb Cortex; 2019 Jul; 29(8):3241-3252. PubMed ID: 30137253 [TBL] [Abstract][Full Text] [Related]
10. Dysregulated metabotropic glutamate receptor-dependent translation of AMPA receptor and postsynaptic density-95 mRNAs at synapses in a mouse model of fragile X syndrome. Muddashetty RS; Kelić S; Gross C; Xu M; Bassell GJ J Neurosci; 2007 May; 27(20):5338-48. PubMed ID: 17507556 [TBL] [Abstract][Full Text] [Related]
11. Altered Connectivity and Synapse Maturation of the Hippocampal Mossy Fiber Pathway in a Mouse Model of the Fragile X Syndrome. Scharkowski F; Frotscher M; Lutz D; Korte M; Michaelsen-Preusse K Cereb Cortex; 2018 Mar; 28(3):852-867. PubMed ID: 28077511 [TBL] [Abstract][Full Text] [Related]
12. Synaptic vesicle dynamic changes in a model of fragile X. Broek JAC; Lin Z; de Gruiter HM; van 't Spijker H; Haasdijk ED; Cox D; Ozcan S; van Cappellen GWA; Houtsmuller AB; Willemsen R; de Zeeuw CI; Bahn S Mol Autism; 2016; 7():17. PubMed ID: 26933487 [TBL] [Abstract][Full Text] [Related]
13. Fragile X protein FMRP is required for homeostatic plasticity and regulation of synaptic strength by retinoic acid. Soden ME; Chen L J Neurosci; 2010 Dec; 30(50):16910-21. PubMed ID: 21159962 [TBL] [Abstract][Full Text] [Related]
14. Matrix metalloproteinase-9 deletion rescues auditory evoked potential habituation deficit in a mouse model of Fragile X Syndrome. Lovelace JW; Wen TH; Reinhard S; Hsu MS; Sidhu H; Ethell IM; Binder DK; Razak KA Neurobiol Dis; 2016 May; 89():126-35. PubMed ID: 26850918 [TBL] [Abstract][Full Text] [Related]
15. Fragile X mental retardation protein deficiency leads to excessive mGluR5-dependent internalization of AMPA receptors. Nakamoto M; Nalavadi V; Epstein MP; Narayanan U; Bassell GJ; Warren ST Proc Natl Acad Sci U S A; 2007 Sep; 104(39):15537-42. PubMed ID: 17881561 [TBL] [Abstract][Full Text] [Related]
16. Metabotropic receptor-dependent long-term depression persists in the absence of protein synthesis in the mouse model of fragile X syndrome. Nosyreva ED; Huber KM J Neurophysiol; 2006 May; 95(5):3291-5. PubMed ID: 16452252 [TBL] [Abstract][Full Text] [Related]
18. Characterization and reversal of synaptic defects in the amygdala in a mouse model of fragile X syndrome. Suvrathan A; Hoeffer CA; Wong H; Klann E; Chattarji S Proc Natl Acad Sci U S A; 2010 Jun; 107(25):11591-6. PubMed ID: 20534533 [TBL] [Abstract][Full Text] [Related]
19. Voltage-Independent SK-Channel Dysfunction Causes Neuronal Hyperexcitability in the Hippocampus of Deng PY; Carlin D; Oh YM; Myrick LK; Warren ST; Cavalli V; Klyachko VA J Neurosci; 2019 Jan; 39(1):28-43. PubMed ID: 30389838 [TBL] [Abstract][Full Text] [Related]
20. Fragile X mental retardation protein induces synapse loss through acute postsynaptic translational regulation. Pfeiffer BE; Huber KM J Neurosci; 2007 Mar; 27(12):3120-30. PubMed ID: 17376973 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]