BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 29771352)

  • 21. Engineering Critical Enzymes and Pathways for Improved Triterpenoid Biosynthesis in Yeast.
    Guo H; Wang H; Huo YX
    ACS Synth Biol; 2020 Sep; 9(9):2214-2227. PubMed ID: 32786348
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Efficient production of anthocyanins in
    Xu S; Li G; Zhou J; Chen G; Shao J
    Front Bioeng Biotechnol; 2022; 10():899182. PubMed ID: 36061422
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Raising the production of phloretin by alleviation of by-product of chalcone synthase in the engineered yeast.
    Jiang C; Liu X; Chen X; Cai Y; Zhuang Y; Liu T; Zhu X; Wang H; Liu Y; Jiang H; Wang W
    Sci China Life Sci; 2020 Nov; 63(11):1734-1743. PubMed ID: 32347474
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genomics-Based Discovery of Plant Genes for Synthetic Biology of Terpenoid Fragrances: A Case Study in Sandalwood oil Biosynthesis.
    Celedon JM; Bohlmann J
    Methods Enzymol; 2016; 576():47-67. PubMed ID: 27480682
    [TBL] [Abstract][Full Text] [Related]  

  • 25.
    Chrzanowski G
    Int J Mol Sci; 2020 Oct; 21(19):. PubMed ID: 33027901
    [TBL] [Abstract][Full Text] [Related]  

  • 26. De novo biosynthesis of bioactive isoflavonoids by engineered yeast cell factories.
    Liu Q; Liu Y; Li G; Savolainen O; Chen Y; Nielsen J
    Nat Commun; 2021 Oct; 12(1):6085. PubMed ID: 34667183
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metabolic Engineering of Saccharomyces cerevisiae for High-Level Production of Salidroside from Glucose.
    Jiang J; Yin H; Wang S; Zhuang Y; Liu S; Liu T; Ma Y
    J Agric Food Chem; 2018 May; 66(17):4431-4438. PubMed ID: 29671328
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metabolic Engineering of
    Zhou X; He J; Wang L; Wang Y; Du G; Kang Z
    J Microbiol Biotechnol; 2019 May; 29(5):758-764. PubMed ID: 30955255
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Complete Biosynthesis of Anthocyanins Using
    Jones JA; Vernacchio VR; Collins SM; Shirke AN; Xiu Y; Englaender JA; Cress BF; McCutcheon CC; Linhardt RJ; Gross RA; Koffas MAG
    mBio; 2017 Jun; 8(3):. PubMed ID: 28588129
    [TBL] [Abstract][Full Text] [Related]  

  • 30. De novo production of six key grape aroma monoterpenes by a geraniol synthase-engineered S. cerevisiae wine strain.
    Pardo E; Rico J; Gil JV; Orejas M
    Microb Cell Fact; 2015 Sep; 14():136. PubMed ID: 26377186
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of Guaiene Synthases from
    An T; Li L; Lin Y; Zeng F; Lin P; Zi J
    J Agric Food Chem; 2020 Mar; 68(10):3214-3219. PubMed ID: 32079394
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Engineering a microbial biosynthesis platform for de novo production of tropane alkaloids.
    Srinivasan P; Smolke CD
    Nat Commun; 2019 Aug; 10(1):3634. PubMed ID: 31406117
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Putting bugs to the blush: metabolic engineering for phenylpropanoid-derived products in microorganisms.
    van Summeren-Wesenhagen PV; Marienhagen J
    Bioengineered; 2013; 4(6):355-62. PubMed ID: 23851446
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Highly efficient biosynthesis of astaxanthin in Saccharomyces cerevisiae by integration and tuning of algal crtZ and bkt.
    Zhou P; Ye L; Xie W; Lv X; Yu H
    Appl Microbiol Biotechnol; 2015 Oct; 99(20):8419-28. PubMed ID: 26156241
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimization of yeast-based production of medicinal protoberberine alkaloids.
    Galanie S; Smolke CD
    Microb Cell Fact; 2015 Sep; 14():144. PubMed ID: 26376732
    [TBL] [Abstract][Full Text] [Related]  

  • 36. De novo biosynthesis of carminic acid in Saccharomyces cerevisiae.
    Zhang Q; Wang X; Zeng W; Xu S; Li D; Yu S; Zhou J
    Metab Eng; 2023 Mar; 76():50-62. PubMed ID: 36634840
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Orthogonal Engineering of Biosynthetic Pathway for Efficient Production of Limonene in Saccharomyces cerevisiae.
    Cheng S; Liu X; Jiang G; Wu J; Zhang JL; Lei D; Yuan YJ; Qiao J; Zhao GR
    ACS Synth Biol; 2019 May; 8(5):968-975. PubMed ID: 31063692
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biosynthesis of natural flavanones in Saccharomyces cerevisiae.
    Yan Y; Kohli A; Koffas MA
    Appl Environ Microbiol; 2005 Sep; 71(9):5610-3. PubMed ID: 16151160
    [TBL] [Abstract][Full Text] [Related]  

  • 39. De novo biosynthesis of trans-cinnamic acid derivatives in Saccharomyces cerevisiae.
    Gottardi M; Knudsen JD; Prado L; Oreb M; Branduardi P; Boles E
    Appl Microbiol Biotechnol; 2017 Jun; 101(12):4883-4893. PubMed ID: 28353001
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Whole-cell biocatalytic and de novo production of alkanes from free fatty acids in Saccharomyces cerevisiae.
    Foo JL; Susanto AV; Keasling JD; Leong SS; Chang MW
    Biotechnol Bioeng; 2017 Jan; 114(1):232-237. PubMed ID: 26717118
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.