BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 29771425)

  • 21. CXC chemokine receptor 7 ameliorates renal fibrosis by inhibiting β-catenin signaling and epithelial-to-mesenchymal transition in tubular epithelial cells.
    Meng P; Liu C; Li J; Fang P; Yang B; Sun W; Zhang Y
    Ren Fail; 2024 Dec; 46(1):2300727. PubMed ID: 38189094
    [TBL] [Abstract][Full Text] [Related]  

  • 22. FHL2 expression and variants in hypertrophic cardiomyopathy.
    Friedrich FW; Reischmann S; Schwalm A; Unger A; Ramanujam D; Münch J; Müller OJ; Hengstenberg C; Galve E; Charron P; Linke WA; Engelhardt S; Patten M; Richard P; van der Velden J; Eschenhagen T; Isnard R; Carrier L
    Basic Res Cardiol; 2014; 109(6):451. PubMed ID: 25358972
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Effect of Shen Qi Wan Medicated Serum on NRK-52E Cells Proliferation and Migration by Targeting Aquaporin 1 (AQP1).
    He Y; Bao YT; Chen HS; Chen YT; Zhou XJ; Yang YX; Li CY
    Med Sci Monit; 2020 Jun; 26():e922943. PubMed ID: 32491998
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Calcium signaling induces partial EMT and renal fibrosis in a Wnt4
    Naillat F; Deshar G; Hankkila A; Rak-Raszewska A; Sharma A; Prunskaite-Hyyrylainen R; Railo A; Shan J; Vainio SJ
    Biochim Biophys Acta Mol Basis Dis; 2024 Jun; 1870(5):167180. PubMed ID: 38653356
    [TBL] [Abstract][Full Text] [Related]  

  • 25. miR-29c Inhibits Renal Interstitial Fibrotic Proliferative Properties through PI3K-AKT Pathway.
    Feng W; Xie H; Li J; Yan X; Zhu S; Sun S
    Appl Bionics Biomech; 2022; 2022():6382323. PubMed ID: 36051820
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intrarenal 1-methoxypyrene, an aryl hydrocarbon receptor agonist, mediates progressive tubulointerstitial fibrosis in mice.
    Cao G; Miao H; Wang YN; Chen DQ; Wu XQ; Chen L; Guo Y; Zou L; Vaziri ND; Li P; Zhao YY
    Acta Pharmacol Sin; 2022 Nov; 43(11):2929-2945. PubMed ID: 35577910
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural domain in the Titin N2B-us region binds to FHL2 in a force-activation dependent manner.
    Sun Y; Liu X; Huang W; Le S; Yan J
    Nat Commun; 2024 May; 15(1):4496. PubMed ID: 38802383
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Palmitoyltransferase DHHC9 and acyl protein thioesterase APT1 modulate renal fibrosis through regulating β-catenin palmitoylation.
    Gu M; Jiang H; Tan M; Yu L; Xu N; Li Y; Wu H; Hou Q; Dai C
    Nat Commun; 2023 Oct; 14(1):6682. PubMed ID: 37865665
    [TBL] [Abstract][Full Text] [Related]  

  • 29.
    Xu Z; Tian M; Tan Q; Hao P; Gao Z; Li C; Jin N
    Int J Mol Sci; 2023 Dec; 25(1):. PubMed ID: 38203523
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Renal interstitial fibrosis: mechanisms and evaluation.
    Farris AB; Colvin RB
    Curr Opin Nephrol Hypertens; 2012 May; 21(3):289-300. PubMed ID: 22449945
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Whole-transcriptome analysis of UUO mouse model of renal fibrosis reveals new molecular players in kidney diseases.
    Arvaniti E; Moulos P; Vakrakou A; Chatziantoniou C; Chadjichristos C; Kavvadas P; Charonis A; Politis PK
    Sci Rep; 2016 May; 6():26235. PubMed ID: 27189340
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Positive correlation between renal tubular flattening and renal tubular injury/interstitial fibrosis in murine kidney disease models.
    Takahashi Y; Watanabe M; Hiura K; Isobe A; Sasaki H; Sasaki N
    J Vet Med Sci; 2021 Mar; 83(3):397-402. PubMed ID: 33431722
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Renal lipid accumulation and aging linked to tubular cells injury via ANGPTL4.
    Wang X; Chang HC; Gu X; Han W; Mao S; Lu L; Jiang S; Ding H; Han S; Qu X; Bao Z
    Mech Ageing Dev; 2024 Jun; 219():111932. PubMed ID: 38580082
    [TBL] [Abstract][Full Text] [Related]  

  • 34. C-X-C chemokine receptor type 4 promotes tubular cell senescence and renal fibrosis through β-catenin-inhibited fatty acid oxidation.
    Wu Q; Chen Q; Xu D; Wang X; Ye H; Li X; Xiong Y; Li J; Zhou S; Miao J; Shen W; Liu Y; Niu H; Tang Y; Zhou L
    J Cell Mol Med; 2024 Feb; 28(3):e18075. PubMed ID: 38213100
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metabolic characterization of directly reprogrammed renal tubular epithelial cells (iRECs).
    Lagies S; Pichler R; Kaminski MM; Schlimpert M; Walz G; Lienkamp SS; Kammerer B
    Sci Rep; 2018 Mar; 8(1):3878. PubMed ID: 29497074
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Correction to "The mechanism of mulberry leaves against renal tubular interstitial fibrosis through ERK1/2 signaling pathway was predicted by network pharmacology and validated in human tubular epithelial cells".
    Phytother Res; 2023 Aug; 37(8):3645-3647. PubMed ID: 37309598
    [No Abstract]   [Full Text] [Related]  

  • 37. Retraction: QiShenYiQi Attenuates Renal Interstitial Fibrosis by Blocking the Activation of β-Catenin.
    Zhou Z; Hu Z; Li M; Zhu F; Zhang H; Nie J; Ai J
    PLoS One; 2024; 19(1):e0297842. PubMed ID: 38261559
    [No Abstract]   [Full Text] [Related]  

  • 38. Elevated aerobic glycolysis in renal tubular epithelial cells influences the proliferation and differentiation of podocytes and promotes renal interstitial fibrosis.
    Li M; Jia F; Zhou H; Di J; Yang M
    Eur Rev Med Pharmacol Sci; 2018 Aug; 22(16):5082-5090. PubMed ID: 30178826
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deletion of FHL2 in fibroblasts attenuates fibroblasts activation and kidney fibrosis via restraining TGF-β1-induced Wnt/β-catenin signaling.
    Duan Y; Qiu Y; Huang X; Dai C; Yang J; He W
    J Mol Med (Berl); 2020 Feb; 98(2):291-307. PubMed ID: 31927599
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Macrophages: versatile players in renal inflammation and fibrosis.
    Tang PM; Nikolic-Paterson DJ; Lan HY
    Nat Rev Nephrol; 2019 Mar; 15(3):144-158. PubMed ID: 30692665
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.