BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 29771823)

  • 1. Residual Force Enhancement Is Attenuated in a Shortening Magnitude-dependent Manner.
    Fukutani A; Herzog W
    Med Sci Sports Exerc; 2018 Oct; 50(10):2007-2014. PubMed ID: 29771823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of stretch magnitude on the stretch-shortening cycle in skinned muscle fibres.
    Fukutani A; Herzog W
    J Exp Biol; 2019 Jun; 222(Pt 13):. PubMed ID: 31171600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Residual Force Enhancement Is Preserved for Conditions of Reduced Contractile Force.
    Fukutani A; Herzog W
    Med Sci Sports Exerc; 2018 Jun; 50(6):1186-1191. PubMed ID: 29373340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differences in stretch-shortening cycle and residual force enhancement between muscles.
    Fukutani A; Herzog W
    J Biomech; 2020 Nov; 112():110040. PubMed ID: 32980750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Force depression following a stretch-shortening cycle is independent of stretch peak force and work performed during shortening.
    Fortuna R; Kirchhuebel H; Seiberl W; Power GA; Herzog W
    Sci Rep; 2018 Jan; 8(1):1534. PubMed ID: 29367663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of muscle length on the stretch-shortening cycle in skinned rabbit soleus.
    Fukutani A; Isaka T
    Sci Rep; 2019 Dec; 9(1):18350. PubMed ID: 31797995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Force depression following a stretch-shortening cycle depends on the amount of residual force enhancement established in the initial stretch phase.
    Fortuna R; Goecking T; Seiberl W; Herzog W
    Physiol Rep; 2019 Aug; 7(16):e14188. PubMed ID: 31420953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The stretch-shortening cycle effect is prominent in the inhibited force state.
    Fukutani A; Herzog W
    J Biomech; 2021 Jan; 115():110136. PubMed ID: 33248703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Residual force enhancement contributes to increased performance during stretch-shortening cycles of human plantar flexor muscles in vivo.
    Hahn D; Riedel TN
    J Biomech; 2018 Aug; 77():190-193. PubMed ID: 29935734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The stretch-shortening cycle (SSC) revisited: residual force enhancement contributes to increased performance during fast SSCs of human m. adductor pollicis.
    Seiberl W; Power GA; Herzog W; Hahn D
    Physiol Rep; 2015 May; 3(5):. PubMed ID: 25975646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased force following muscle stretching and simultaneous fibre shortening: Residual force enhancement or force depression - That is the question?
    Mahmood S; Sawatsky A; Herzog W
    J Biomech; 2021 Feb; 116():110216. PubMed ID: 33460865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of Stretch-Induced Force Enhancement to Increased Performance in Maximal Voluntary and Submaximal Artificially Activated Stretch-Shortening Muscle Action.
    Groeber M; Stafilidis S; Seiberl W; Baca A
    Front Physiol; 2020; 11():592183. PubMed ID: 33281623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of residual force enhancement and elongation of attached cross-bridges on stretch-shortening cycle in skinned muscle fibers.
    Fukutani A; Joumaa V; Herzog W
    Physiol Rep; 2017 Nov; 5(22):. PubMed ID: 29180479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Does stretching velocity affect residual force enhancement?
    Fukutani A; Leonard T; Herzog W
    J Biomech; 2019 May; 89():143-147. PubMed ID: 31060810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy Cost of Force Production After a Stretch-Shortening Cycle in Skinned Muscle Fibers: Does Muscle Efficiency Increase?
    Joumaa V; Fukutani A; Herzog W
    Front Physiol; 2020; 11():567538. PubMed ID: 33536930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterizing residual and passive force enhancements in cardiac myofibrils.
    Han SW; Boldt K; Joumaa V; Herzog W
    Biophys J; 2023 Apr; 122(8):1538-1547. PubMed ID: 36932677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Residual and passive force enhancement in skinned cardiac fibre bundles.
    Boldt K; Han SW; Joumaa V; Herzog W
    J Biomech; 2020 Aug; 109():109953. PubMed ID: 32807325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of stretch-shortening magnitude and muscle-tendon unit length on performance enhancement in a stretch-shortening cycle.
    Groeber M; Stafilidis S; Baca A
    Sci Rep; 2021 Jul; 11(1):14605. PubMed ID: 34272461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shortening-induced force depression is modulated in a time- and speed-dependent manner following a stretch-shortening cycle.
    Fortuna R; Groeber M; Seiberl W; Power GA; Herzog W
    Physiol Rep; 2017 Jun; 5(12):. PubMed ID: 28667097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cross-Bridges and Sarcomeric Non-cross-bridge Structures Contribute to Increased Work in Stretch-Shortening Cycles.
    Tomalka A; Weidner S; Hahn D; Seiberl W; Siebert T
    Front Physiol; 2020; 11():921. PubMed ID: 32848862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.