These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 29771931)

  • 1. Early and late indications of item-specific control in a Stroop mouse tracking study.
    Bundt C; Ruitenberg MFL; Abrahamse EL; Notebaert W
    PLoS One; 2018; 13(5):e0197278. PubMed ID: 29771931
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Attentional control adjustments in Eriksen and Stroop task performance can be independent of response conflict.
    Lamers MJ; Roelofs A
    Q J Exp Psychol (Hove); 2011 Jun; 64(6):1056-81. PubMed ID: 21113864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Item-specific control of attention in the Stroop task: Contingency learning is not the whole story in the item-specific proportion-congruent effect.
    Spinelli G; Lupker SJ
    Mem Cognit; 2020 Apr; 48(3):426-435. PubMed ID: 31705394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Converging evidence for control of color-word Stroop interference at the item level.
    Bugg JM; Hutchison KA
    J Exp Psychol Hum Percept Perform; 2013 Apr; 39(2):433-49. PubMed ID: 22845037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cognitive control during a spatial Stroop task: Comparing conflict monitoring and prediction of response-outcome theories.
    Pires L; Leitão J; Guerrini C; Simões MR
    Acta Psychol (Amst); 2018 Sep; 189():63-75. PubMed ID: 28683927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The interactive effects of listwide control, item-based control, and working memory capacity on Stroop performance.
    Hutchison KA
    J Exp Psychol Learn Mem Cogn; 2011 Jul; 37(4):851-60. PubMed ID: 21517220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Response competition and response inhibition during different choice-discrimination tasks: evidence from ERP measured inside MRI scanner.
    Gonzalez-Rosa JJ; Inuggi A; Blasi V; Cursi M; Annovazzi P; Comi G; Falini A; Leocani L
    Int J Psychophysiol; 2013 Jul; 89(1):37-47. PubMed ID: 23664841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Learning to be in control involves response-specific mechanisms.
    Ruitenberg MFL; Braem S; Du Cheyne H; Notebaert W
    Atten Percept Psychophys; 2019 Oct; 81(7):2526-2537. PubMed ID: 31073949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Top-down suppression of incompatible motor activations during response selection under conflict.
    Klein PA; Petitjean C; Olivier E; Duque J
    Neuroimage; 2014 Feb; 86():138-49. PubMed ID: 23939021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Context-specific control and context selection in conflict tasks.
    Schouppe N; Ridderinkhof KR; Verguts T; Notebaert W
    Acta Psychol (Amst); 2014 Feb; 146():63-6. PubMed ID: 24384400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generalizing attentional control across dimensions and tasks: evidence from transfer of proportion-congruent effects.
    Wühr P; Duthoo W; Notebaert W
    Q J Exp Psychol (Hove); 2015; 68(4):779-801. PubMed ID: 25380403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for interaction between the stop signal and the Stroop task conflict.
    Kalanthroff E; Goldfarb L; Henik A
    J Exp Psychol Hum Percept Perform; 2013 Apr; 39(2):579-92. PubMed ID: 22390293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Congruency sequence effect in cross-task context: evidence for dimension-specific modulation.
    Lee J; Cho YS
    Acta Psychol (Amst); 2013 Nov; 144(3):617-27. PubMed ID: 24184348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Why it is too early to lose control in accounts of item-specific proportion congruency effects.
    Bugg JM; Jacoby LL; Chanani S
    J Exp Psychol Hum Percept Perform; 2011 Jun; 37(3):844-59. PubMed ID: 20718569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Task conflict and proactive control: A computational theory of the Stroop task.
    Kalanthroff E; Davelaar EJ; Henik A; Goldfarb L; Usher M
    Psychol Rev; 2018 Jan; 125(1):59-82. PubMed ID: 29035077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The neural dynamics of stimulus and response conflict processing as a function of response complexity and task demands.
    Donohue SE; Appelbaum LG; McKay CC; Woldorff MG
    Neuropsychologia; 2016 Apr; 84():14-28. PubMed ID: 26827917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The negative priming effect in cognitive conflict processing.
    Pan F; Shi L; Lu Q; Wu X; Xue S; Li Q
    Neurosci Lett; 2016 Aug; 628():35-9. PubMed ID: 27268038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissociating proportion congruent and conflict adaptation effects in a Simon-Stroop procedure.
    Torres-Quesada M; Funes MJ; Lupiáñez J
    Acta Psychol (Amst); 2013 Feb; 142(2):203-10. PubMed ID: 23337083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stop interfering: Stroop task conflict independence from informational conflict and interference.
    Kalanthroff E; Goldfarb L; Usher M; Henik A
    Q J Exp Psychol (Hove); 2013; 66(7):1356-67. PubMed ID: 23163896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adjustment of control in the numerical Stroop task.
    Dadon G; Henik A
    Mem Cognit; 2017 Aug; 45(6):891-902. PubMed ID: 28337604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.