These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 29771971)

  • 1. Constitutive metanephric mesenchyme-specific expression of interferon-gamma causes renal dysplasia by regulating Sall1 expression.
    Yun K; Hurwitz AA; Perantoni AO
    PLoS One; 2018; 13(5):e0197356. PubMed ID: 29771971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Osr1 Interacts Synergistically with Wt1 to Regulate Kidney Organogenesis.
    Xu J; Liu H; Chai OH; Lan Y; Jiang R
    PLoS One; 2016; 11(7):e0159597. PubMed ID: 27442016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Six1 is required for the early organogenesis of mammalian kidney.
    Xu PX; Zheng W; Huang L; Maire P; Laclef C; Silvius D
    Development; 2003 Jul; 130(14):3085-94. PubMed ID: 12783782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Essential roles of Sall family genes in kidney development.
    Nishinakamura R; Osafune K
    J Physiol Sci; 2006 Apr; 56(2):131-6. PubMed ID: 16839447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Essential roles of Sall1 in kidney development.
    Nishinakamura R; Takasato M
    Kidney Int; 2005 Nov; 68(5):1948-50. PubMed ID: 16221172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Roles of hepatocyte growth factor/scatter factor and the met receptor in the early development of the metanephros.
    Woolf AS; Kolatsi-Joannou M; Hardman P; Andermarcher E; Moorby C; Fine LG; Jat PS; Noble MD; Gherardi E
    J Cell Biol; 1995 Jan; 128(1-2):171-84. PubMed ID: 7822413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Eya 1 acts as a critical regulator for specifying the metanephric mesenchyme.
    Sajithlal G; Zou D; Silvius D; Xu PX
    Dev Biol; 2005 Aug; 284(2):323-36. PubMed ID: 16018995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mouse line expressing Sall1-driven inducible Cre recombinase in the kidney mesenchyme.
    Inoue S; Inoue M; Fujimura S; Nishinakamura R
    Genesis; 2010 Mar; 48(3):207-12. PubMed ID: 20127799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. β-Catenin overexpression in the metanephric mesenchyme leads to renal dysplasia genesis via cell-autonomous and non-cell-autonomous mechanisms.
    Sarin S; Boivin F; Li A; Lim J; Svajger B; Rosenblum ND; Bridgewater D
    Am J Pathol; 2014 May; 184(5):1395-410. PubMed ID: 24637293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of kidney mesenchymal genes by a combination of microarray analysis and Sall1-GFP knockin mice.
    Takasato M; Osafune K; Matsumoto Y; Kataoka Y; Yoshida N; Meguro H; Aburatani H; Asashima M; Nishinakamura R
    Mech Dev; 2004 Jun; 121(6):547-57. PubMed ID: 15172686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcription Factor 21 Is Required for Branching Morphogenesis and Regulates the Gdnf-Axis in Kidney Development.
    Ide S; Finer G; Maezawa Y; Onay T; Souma T; Scott R; Ide K; Akimoto Y; Li C; Ye M; Zhao X; Baba Y; Minamizuka T; Jin J; Takemoto M; Yokote K; Quaggin SE
    J Am Soc Nephrol; 2018 Dec; 29(12):2795-2808. PubMed ID: 30377232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mi-2/NuRD is required in renal progenitor cells during embryonic kidney development.
    Denner DR; Rauchman M
    Dev Biol; 2013 Mar; 375(2):105-16. PubMed ID: 23201013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Involvement of laminin binding integrins and laminin-5 in branching morphogenesis of the ureteric bud during kidney development.
    Zent R; Bush KT; Pohl ML; Quaranta V; Koshikawa N; Wang Z; Kreidberg JA; Sakurai H; Stuart RO; Nigám SK
    Dev Biol; 2001 Oct; 238(2):289-302. PubMed ID: 11784011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overexpression of Sall1 in vivo leads to reduced body weight without affecting kidney development.
    Jiang Q; Fujimura S; Kobayashi C; Nishinakamura R
    J Biochem; 2010 Mar; 147(3):445-50. PubMed ID: 20053786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Loss of ICAT gene function leads to arrest of ureteric bud branching and renal agenesis.
    Hasegawa Y; Satoh K; Iizuka-Kogo A; Shimomura A; Nomura R; Akiyama T; Senda T
    Biochem Biophys Res Commun; 2007 Nov; 362(4):988-94. PubMed ID: 17803964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ureteric bud apoptosis and renal hypoplasia in transgenic PAX2-Bax fetal mice mimics the renal-coloboma syndrome.
    Dziarmaga A; Clark P; Stayner C; Julien JP; Torban E; Goodyer P; Eccles M
    J Am Soc Nephrol; 2003 Nov; 14(11):2767-74. PubMed ID: 14569086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of ureteric bud branching morphogenesis by sulfated proteoglycans in the developing kidney.
    Steer DL; Shah MM; Bush KT; Stuart RO; Sampogna RV; Meyer TN; Schwesinger C; Bai X; Esko JD; Nigam SK
    Dev Biol; 2004 Aug; 272(2):310-27. PubMed ID: 15282150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sympathoadrenal hyperplasia causes renal malformations in Ret(MEN2B)-transgenic mice.
    Gestblom C; Sweetser DA; Doggett B; Kapur RP
    Am J Pathol; 1999 Dec; 155(6):2167-79. PubMed ID: 10595945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Urogenital development in Pallister-Hall syndrome is disrupted in a cell-lineage-specific manner by constitutive expression of GLI3 repressor.
    Blake J; Hu D; Cain JE; Rosenblum ND
    Hum Mol Genet; 2016 Feb; 25(3):437-47. PubMed ID: 26604140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. vHNF1 functions in distinct regulatory circuits to control ureteric bud branching and early nephrogenesis.
    Lokmane L; Heliot C; Garcia-Villalba P; Fabre M; Cereghini S
    Development; 2010 Jan; 137(2):347-57. PubMed ID: 20040500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.