BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

478 related articles for article (PubMed ID: 29772025)

  • 1. Shape-shifting trypanosomes: Flagellar shortening followed by asymmetric division in Trypanosoma congolense from the tsetse proventriculus.
    Peacock L; Kay C; Bailey M; Gibson W
    PLoS Pathog; 2018 May; 14(5):e1007043. PubMed ID: 29772025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The life cycle of Trypanosoma (Nannomonas) congolense in the tsetse fly.
    Peacock L; Cook S; Ferris V; Bailey M; Gibson W
    Parasit Vectors; 2012 Jun; 5():109. PubMed ID: 22676292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of the livestock pathogen Trypanosoma (Nannomonas) simiae in the tsetse fly with description of putative sexual stages from the proboscis.
    Peacock L; Kay C; Collett C; Bailey M; Gibson W
    Parasit Vectors; 2023 Jul; 16(1):231. PubMed ID: 37434196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trypanosoma brucei spp. development in the tsetse fly: characterization of the post-mesocyclic stages in the foregut and proboscis.
    Van Den Abbeele J; Claes Y; van Bockstaele D; Le Ray D; Coosemans M
    Parasitology; 1999 May; 118 ( Pt 5)():469-78. PubMed ID: 10363280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flying tryps: survival and maturation of trypanosomes in tsetse flies.
    Dyer NA; Rose C; Ejeh NO; Acosta-Serrano A
    Trends Parasitol; 2013 Apr; 29(4):188-96. PubMed ID: 23507033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tsetse Fly Transmission Studies of African Trypanosomes.
    Peacock L; Gibson W
    Methods Mol Biol; 2020; 2116():49-67. PubMed ID: 32221913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suppression of Trypanosoma congolense, T. vivax and T. brucei infection rates in tsetse flies maintained on goats immunized with uncoated forms of trypanosomes grown in vitro.
    Murray M; Hirumi H; Moloo SK
    Parasitology; 1985 Aug; 91 ( Pt 1)():53-66. PubMed ID: 4034247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental genetic crosses in tsetse flies of the livestock pathogen Trypanosoma congolense savannah.
    Peacock L; Kay C; Bailey M; Gibson W
    Parasit Vectors; 2024 Jan; 17(1):4. PubMed ID: 38178172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Flagellar Arginine Kinase in Trypanosoma brucei Is Important for Infection in Tsetse Flies.
    Ooi CP; Rotureau B; Gribaldo S; Georgikou C; Julkowska D; Blisnick T; Perrot S; Subota I; Bastin P
    PLoS One; 2015; 10(7):e0133676. PubMed ID: 26218532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trypanosoma congolense: Molecular Toolkit and Resources for Studying a Major Livestock Pathogen and Model Trypanosome.
    Gibson W; Kay C; Peacock L
    Adv Parasitol; 2017; 98():283-309. PubMed ID: 28942771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ability of trypanosome-infected tsetse flies (Diptera: Glossinidae) to acquire an infection with a second trypanosome species.
    Kubi C; Van den Abbeele J; Dorny P; Coosemans M; Marcotty T; Van den Bossche P
    J Med Entomol; 2005 Nov; 42(6):1035-8. PubMed ID: 16465745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequential infection of tsetse flies with Trypanosoma congolense and Trypanosoma brucei.
    Gibson W; Ferris V
    Acta Trop; 1992 Apr; 50(4):345-52. PubMed ID: 1356306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tsetse fly tolerance to T. brucei infection: transcriptome analysis of trypanosome-associated changes in the tsetse fly salivary gland.
    Matetovici I; Caljon G; Van Den Abbeele J
    BMC Genomics; 2016 Nov; 17(1):971. PubMed ID: 27884110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new asymmetric division contributes to the continuous production of infective trypanosomes in the tsetse fly.
    Rotureau B; Subota I; Buisson J; Bastin P
    Development; 2012 May; 139(10):1842-50. PubMed ID: 22491946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Timing and original features of flagellum assembly in trypanosomes during development in the tsetse fly.
    Lemos M; Mallet A; Bertiaux E; Imbert A; Rotureau B; Bastin P
    Parasit Vectors; 2020 Apr; 13(1):169. PubMed ID: 32248844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differentiation between culture-derived insect stages of T. brucei, T. vivax, T. congolense and T. simiae using a monoclonal antibody-based dot-ELISA.
    Bosompem KM; Assoku RK; Nantulya VM
    Parasitology; 1996 Jan; 112 ( Pt 1)():59-66. PubMed ID: 8587802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential virulence and tsetse fly transmissibility of
    Gitonga PK; Ndung'u K; Murilla GA; Thande PC; Wamwiri FN; Auma JE; Ngae GN; Kibugu JK; Kurgat R; Thuita JK
    Onderstepoort J Vet Res; 2017 Jun; 84(1):e1-e10. PubMed ID: 28697609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redistribution of FLAgellar Member 8 during the trypanosome life cycle: Consequences for cell fate prediction.
    Calvo-Álvarez E; Bonnefoy S; Salles A; Benson FE; McKean PG; Bastin P; Rotureau B
    Cell Microbiol; 2021 Sep; 23(9):e13347. PubMed ID: 33896083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The requirement for epimastigote attachment during division and metacyclogenesis in Trypanosoma congolense.
    Hendry KA; Vickerman K
    Parasitol Res; 1988; 74(5):403-8. PubMed ID: 3413039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trypanosoma congolense: In Vitro Culture and Transfection.
    Kay C; Peacock L; Gibson W
    Curr Protoc Microbiol; 2019 Jun; 53(1):e77. PubMed ID: 30707507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.