BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

468 related articles for article (PubMed ID: 29772176)

  • 1. Improving "Silver-Standard" Benchmark Interaction Energies with Bond Functions.
    Dutta NN; Patkowski K
    J Chem Theory Comput; 2018 Jun; 14(6):3053-3070. PubMed ID: 29772176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the accuracy of explicitly correlated coupled-cluster interaction energies--have orbital results been beaten yet?
    Patkowski K
    J Chem Phys; 2012 Jul; 137(3):034103. PubMed ID: 22830679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Basis set convergence of the coupled-cluster correction, δ(MP2)(CCSD(T)): best practices for benchmarking non-covalent interactions and the attendant revision of the S22, NBC10, HBC6, and HSG databases.
    Marshall MS; Burns LA; Sherrill CD
    J Chem Phys; 2011 Nov; 135(19):194102. PubMed ID: 22112061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extrapolating MP2 and CCSD explicitly correlated correlation energies to the complete basis set limit with first and second row correlation consistent basis sets.
    Hill JG; Peterson KA; Knizia G; Werner HJ
    J Chem Phys; 2009 Nov; 131(19):194105. PubMed ID: 19929044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Benchmark theoretical study of the π-π binding energy in the benzene dimer.
    Miliordos E; Aprà E; Xantheas SS
    J Phys Chem A; 2014 Sep; 118(35):7568-78. PubMed ID: 24761749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Basis set dependence of higher-order correlation effects in π-type interactions.
    Carrell EJ; Thorne CM; Tschumper GS
    J Chem Phys; 2012 Jan; 136(1):014103. PubMed ID: 22239765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of Reaction Barriers and Thermochemical Properties with Explicitly Correlated Coupled-Cluster Methods: A Basis Set Assessment.
    Zhang J; Valeev EF
    J Chem Theory Comput; 2012 Sep; 8(9):3175-86. PubMed ID: 26605729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calculations on noncovalent interactions and databases of benchmark interaction energies.
    Hobza P
    Acc Chem Res; 2012 Apr; 45(4):663-72. PubMed ID: 22225511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of Explicitly Correlated Methods for Computing High-Accuracy Benchmark Energies for Noncovalent Interactions.
    Sirianni DA; Burns LA; Sherrill CD
    J Chem Theory Comput; 2017 Jan; 13(1):86-99. PubMed ID: 28068770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of midbond functions on interaction energies computed using MP2 and CCSD(T).
    Matveeva R; Falck Erichsen M; Koch H; Høyvik IM
    J Comput Chem; 2022 Jan; 43(2):121-131. PubMed ID: 34738658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance of Localized-Orbital Coupled-Cluster Approaches for the Conformational Energies of Longer
    Santra G; Martin JML
    J Phys Chem A; 2022 Dec; 126(50):9375-9391. PubMed ID: 36508714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward a W4-F12 approach: Can explicitly correlated and orbital-based ab initio CCSD(T) limits be reconciled?
    Sylvetsky N; Peterson KA; Karton A; Martin JM
    J Chem Phys; 2016 Jun; 144(21):214101. PubMed ID: 27276939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Post-complete-basis-set extrapolation of conventional and explicitly correlated coupled-cluster energies: can the convergence to the CBS limit be diagnosed?
    Varandas AJC
    Phys Chem Chem Phys; 2021 Apr; 23(14):8717-8730. PubMed ID: 33876031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Small and efficient basis sets for the evaluation of accurate interaction energies: aromatic molecule-argon ground-state intermolecular potentials and rovibrational states.
    Cybulski H; Baranowska-Łączkowska A; Henriksen C; Fernández B
    J Phys Chem A; 2014 Nov; 118(44):10288-97. PubMed ID: 25317989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Platinum, gold, and silver standards of intermolecular interaction energy calculations.
    Kodrycka M; Patkowski K
    J Chem Phys; 2019 Aug; 151(7):070901. PubMed ID: 31438688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimated MP2 and CCSD(T) interaction energies of n-alkane dimers at the basis set limit: comparison of the methods of Helgaker et al. and Feller.
    Tsuzuki S; Honda K; Uchimaru T; Mikami M
    J Chem Phys; 2006 Mar; 124(11):114304. PubMed ID: 16555885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Explicitly Correlated Dispersion and Exchange Dispersion Energies in Symmetry-Adapted Perturbation Theory.
    Kodrycka M; Holzer C; Klopper W; Patkowski K
    J Chem Theory Comput; 2019 Nov; 15(11):5965-5986. PubMed ID: 31503481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Approximations to complete basis set-extrapolated, highly correlated non-covalent interaction energies.
    Mackie ID; DiLabio GA
    J Chem Phys; 2011 Oct; 135(13):134318. PubMed ID: 21992316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Benchmark ab Initio Characterization of the Complex Potential Energy Surface of the F
    Tajti V; Czakó G
    J Phys Chem A; 2017 Apr; 121(14):2847-2854. PubMed ID: 28338332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward a less costly but accurate calculation of the CCSD(T)/CBS noncovalent interaction energy.
    Chen JL; Sun T; Wang YB; Wang W
    J Comput Chem; 2020 May; 41(13):1252-1260. PubMed ID: 32045021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.