These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 29772184)

  • 21. Temperature-sensitive soft microgels at interfaces: air-water versus oil-water.
    Bochenek S; Scotti A; Richtering W
    Soft Matter; 2021 Jan; 17(4):976-988. PubMed ID: 33284940
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The rheology of polyvinylpyrrolidone-coated silica nanoparticles positioned at an air-aqueous interface.
    Yu K; Zhang H; Biggs S; Xu Z; Cayre OJ; Harbottle D
    J Colloid Interface Sci; 2018 Oct; 527():346-355. PubMed ID: 29804004
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of Proteins on Formation, Drainage, and Stability of Liquid Food Foams.
    Narsimhan G; Xiang N
    Annu Rev Food Sci Technol; 2018 Mar; 9():45-63. PubMed ID: 29272186
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stimuli-Responsive Behavior of PNiPAm Microgels under Interfacial Confinement.
    Harrer J; Rey M; Ciarella S; Löwen H; Janssen LMC; Vogel N
    Langmuir; 2019 Aug; 35(32):10512-10521. PubMed ID: 31304759
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A critical review of the growth, drainage and collapse of foams.
    Wang J; Nguyen AV; Farrokhpay S
    Adv Colloid Interface Sci; 2016 Feb; 228():55-70. PubMed ID: 26718078
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Foams prepared from whey protein isolate and egg white protein: 1. Physical, microstructural, and interfacial properties.
    Yang X; Berry TK; Foegeding EA
    J Food Sci; 2009 Jun; 74(5):E259-68. PubMed ID: 19646041
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dielectric relaxations of poly(N-isopropylacrylamide) microgels near the volume phase transition temperature: impact of cross-linking density distribution on the volume phase transition.
    Su W; Zhao K; Wei J; Ngai T
    Soft Matter; 2014 Nov; 10(43):8711-23. PubMed ID: 25263641
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Unexpected cononsolvency behavior of poly (N-isopropylacrylamide)-based microgels.
    Heppner IN; Islam MR; Serpe MJ
    Macromol Rapid Commun; 2013 Nov; 34(21):1708-13. PubMed ID: 24108519
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interfacial Stabilization of Fiber-Laden Foams with Carboxymethylated Lignin toward Strong Nonwoven Networks.
    Li S; Xiang W; Järvinen M; Lappalainen T; Salminen K; Rojas OJ
    ACS Appl Mater Interfaces; 2016 Aug; 8(30):19827-35. PubMed ID: 27398988
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Combined Cononsolvency and Temperature Effects on Adsorbed PNIPAM Microgels.
    Backes S; Krause P; Tabaka W; Witt MU; von Klitzing R
    Langmuir; 2017 Dec; 33(50):14269-14277. PubMed ID: 29166032
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Preparation of colloidal molecules with temperature-tunable interactions from oppositely charged microgel spheres.
    Månsson LK; de Wild T; Peng F; Holm SH; Tegenfeldt JO; Schurtenberger P
    Soft Matter; 2019 Oct; 15(42):8512-8524. PubMed ID: 31633148
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Factors controlling the formation and stability of foams used as precursors of porous materials.
    Lesov I; Tcholakova S; Denkov N
    J Colloid Interface Sci; 2014 Jul; 426():9-21. PubMed ID: 24863759
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Foam drainage in the presence of solid particles.
    Wang J; Nguyen AV
    Soft Matter; 2016 Mar; 12(12):3004-12. PubMed ID: 26877265
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Glass and Jamming Rheology in Soft Particles Made of PNIPAM and Polyacrylic Acid.
    Franco S; Buratti E; Nigro V; Zaccarelli E; Ruzicka B; Angelini R
    Int J Mol Sci; 2021 Apr; 22(8):. PubMed ID: 33919803
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Food-grade monoglyceride oil foams: the effect of tempering on foamability, foam stability and rheological properties.
    Heymans R; Tavernier I; Danthine S; Rimaux T; Van der Meeren P; Dewettinck K
    Food Funct; 2018 Jun; 9(6):3143-3154. PubMed ID: 29790526
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Foaming Behavior of Polymer-Coated Colloids: The Need for Thick Liquid Films.
    Yu K; Zhang H; Hodges C; Biggs S; Xu Z; Cayre OJ; Harbottle D
    Langmuir; 2017 Jul; 33(26):6528-6539. PubMed ID: 28594563
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phase transition behaviors of poly(N-isopropylacrylamide) microgels induced by tannic acid.
    Chen G; Niu CH; Zhou MY; Ju XJ; Xie R; Chu LY
    J Colloid Interface Sci; 2010 Mar; 343(1):168-75. PubMed ID: 20018293
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Are thermoresponsive microgels model systems for concentrated colloidal suspensions? A rheology and small-angle neutron scattering study.
    Stieger M; Pedersen JS; Lindner P; Richtering W
    Langmuir; 2004 Aug; 20(17):7283-92. PubMed ID: 15301516
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Behavior of temperature-responsive copolymer microgels at the oil/water interface.
    Wu Y; Wiese S; Balaceanu A; Richtering W; Pich A
    Langmuir; 2014 Jul; 30(26):7660-9. PubMed ID: 24926817
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Controlling phase distributions in macroporous composite materials through particle-stabilized foams.
    Wong JC; Tervoort E; Busato S; Gauckler LJ; Ermanni P
    Langmuir; 2011 Apr; 27(7):3254-60. PubMed ID: 21401065
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.