BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 29772231)

  • 1. Roles of 14-3-3β and γ in regulation of the glucocorticoid receptor transcriptional activation and hepatic gluconeogenesis.
    Hwang Y; An HT; Kang M; Ko J
    Biochem Biophys Res Commun; 2018 Jun; 501(3):800-806. PubMed ID: 29772231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glucocorticoid receptor mediates the gluconeogenic activity of the farnesoid X receptor in the fasting condition.
    Renga B; Mencarelli A; D'Amore C; Cipriani S; Baldelli F; Zampella A; Distrutti E; Fiorucci S
    FASEB J; 2012 Jul; 26(7):3021-31. PubMed ID: 22447981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRTC2 Is a Coactivator of GR and Couples GR and CREB in the Regulation of Hepatic Gluconeogenesis.
    Hill MJ; Suzuki S; Segars JH; Kino T
    Mol Endocrinol; 2016 Jan; 30(1):104-17. PubMed ID: 26652733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of ApoA-IV with NR4A1 and NR1D1 Represses G6Pase and PEPCK Transcription: Nuclear Receptor-Mediated Downregulation of Hepatic Gluconeogenesis in Mice and a Human Hepatocyte Cell Line.
    Li X; Xu M; Wang F; Ji Y; DavidsoN WS; Li Z; Tso P
    PLoS One; 2015; 10(11):e0142098. PubMed ID: 26556724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Orphan nuclear receptor small heterodimer partner negatively regulates growth hormone-mediated induction of hepatic gluconeogenesis through inhibition of signal transducer and activator of transcription 5 (STAT5) transactivation.
    Kim YD; Li T; Ahn SW; Kim DK; Lee JM; Hwang SL; Kim YH; Lee CH; Lee IK; Chiang JY; Choi HS
    J Biol Chem; 2012 Oct; 287(44):37098-108. PubMed ID: 22977252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Irisin inhibits hepatic gluconeogenesis and increases glycogen synthesis via the PI3K/Akt pathway in type 2 diabetic mice and hepatocytes.
    Liu TY; Shi CX; Gao R; Sun HJ; Xiong XQ; Ding L; Chen Q; Li YH; Wang JJ; Kang YM; Zhu GQ
    Clin Sci (Lond); 2015 Nov; 129(10):839-50. PubMed ID: 26201094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An active part of Artemisia sacrorum Ledeb. suppresses gluconeogenesis through AMPK mediated GSK3β and CREB phosphorylation in human HepG2 cells.
    Yuan HD; Piao GC
    Biosci Biotechnol Biochem; 2011; 75(6):1079-84. PubMed ID: 21670525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The regulation of glucose-6-phosphatase and phosphoenolpyruvate carboxykinase by autophagy in low-glycolytic hepatocellular carcinoma cells.
    Jeon JY; Lee H; Park J; Lee M; Park SW; Kim JS; Lee M; Cho B; Kim K; Choi AM; Kim CK; Yun M
    Biochem Biophys Res Commun; 2015 Jul; 463(3):440-6. PubMed ID: 26036577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel concepts in insulin regulation of hepatic gluconeogenesis.
    Barthel A; Schmoll D
    Am J Physiol Endocrinol Metab; 2003 Oct; 285(4):E685-92. PubMed ID: 12959935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Context Dependent Regulation of Human Phosphoenolpyruvate Carboxykinase Isoforms by DNA Promoter Methylation and RNA Stability.
    Seenappa V; Das B; Joshi MB; Satyamoorthy K
    J Cell Biochem; 2016 Nov; 117(11):2506-20. PubMed ID: 26990534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vernonia amygdalina Delile extract inhibits the hepatic gluconeogenesis through the activation of adenosine-5'monophosph kinase.
    Wu XM; Ren T; Liu JF; Liu YJ; Yang LC; Jin X
    Biomed Pharmacother; 2018 Jul; 103():1384-1391. PubMed ID: 29864922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular mechanism of hypoxia-mediated hepatic gluconeogenesis by transcriptional regulation.
    Choi JH; Park MJ; Kim KW; Choi YH; Park SH; An WG; Yang US; Cheong J
    FEBS Lett; 2005 May; 579(13):2795-801. PubMed ID: 15907483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of 14-3-3 eta as a positive regulator of the glucocorticoid receptor transcriptional activation.
    Kim YS; Jang SW; Sung HJ; Lee HJ; Kim IS; Na DS; Ko J
    Endocrinology; 2005 Jul; 146(7):3133-40. PubMed ID: 15790729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hepatocyte growth factor family negatively regulates hepatic gluconeogenesis via induction of orphan nuclear receptor small heterodimer partner in primary hepatocytes.
    Chanda D; Li T; Song KH; Kim YH; Sim J; Lee CH; Chiang JY; Choi HS
    J Biol Chem; 2009 Oct; 284(42):28510-21. PubMed ID: 19720831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of gluconeogenesis through transcriptional activation of EGR1 and DUSP4 by AMP-activated kinase.
    Berasi SP; Huard C; Li D; Shih HH; Sun Y; Zhong W; Paulsen JE; Brown EL; Gimeno RE; Martinez RV
    J Biol Chem; 2006 Sep; 281(37):27167-77. PubMed ID: 16849326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alteration of 11β-hydroxysteroid dehydrogenase type 1 and glucocorticoid receptor by ethanol in rat liver and mouse hepatoma cells.
    Meng Z; Bao X; Zhang M; Wei S; Chang W; Li J; Chen L; Nyomba BL
    J Diabetes Res; 2013; 2013():218102. PubMed ID: 23819126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. B-cell translocation gene-2 increases hepatic gluconeogenesis via induction of CREB.
    Hwang SL; Kwon O; Lee SJ; Roh SS; Kim YD; Choi JH
    Biochem Biophys Res Commun; 2012 Nov; 427(4):801-5. PubMed ID: 23058912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endoplasmic reticulum stress-induced activation of activating transcription factor 6 decreases cAMP-stimulated hepatic gluconeogenesis via inhibition of CREB.
    Seo HY; Kim MK; Min AK; Kim HS; Ryu SY; Kim NK; Lee KM; Kim HJ; Choi HS; Lee KU; Park KG; Lee IK
    Endocrinology; 2010 Feb; 151(2):561-8. PubMed ID: 20022930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insulin represses phosphoenolpyruvate carboxykinase gene transcription by causing the rapid disruption of an active transcription complex: a potential epigenetic effect.
    Hall RK; Wang XL; George L; Koch SR; Granner DK
    Mol Endocrinol; 2007 Feb; 21(2):550-63. PubMed ID: 17095578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hypoxia increases the rate of renal gluconeogenesis via hypoxia-inducible factor-1-dependent activation of phosphoenolpyruvate carboxykinase expression.
    Owczarek A; Gieczewska K; Jarzyna R; Jagielski AK; Kiersztan A; Gruza A; Winiarska K
    Biochimie; 2020; 171-172():31-37. PubMed ID: 32045650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.