BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

391 related articles for article (PubMed ID: 29772248)

  • 1. Scaffolds for peripheral nerve repair and reconstruction.
    Yi S; Xu L; Gu X
    Exp Neurol; 2019 Sep; 319():112761. PubMed ID: 29772248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction of tissue engineered nerve grafts and their application in peripheral nerve regeneration.
    Gu X; Ding F; Yang Y; Liu J
    Prog Neurobiol; 2011 Feb; 93(2):204-30. PubMed ID: 21130136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bridging peripheral nerve defects with a tissue engineered nerve graft composed of an in vitro cultured nerve equivalent and a silk fibroin-based scaffold.
    Tang X; Xue C; Wang Y; Ding F; Yang Y; Gu X
    Biomaterials; 2012 May; 33(15):3860-7. PubMed ID: 22364696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Skin derived precursor Schwann cell-generated acellular matrix modified chitosan/silk scaffolds for bridging rat sciatic nerve gap.
    Zhu C; Huang J; Xue C; Wang Y; Wang S; Bao S; Chen R; Li Y; Gu Y
    Neurosci Res; 2018 Oct; 135():21-31. PubMed ID: 29288689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogel derived from porcine decellularized nerve tissue as a promising biomaterial for repairing peripheral nerve defects.
    Lin T; Liu S; Chen S; Qiu S; Rao Z; Liu J; Zhu S; Yan L; Mao H; Zhu Q; Quan D; Liu X
    Acta Biomater; 2018 Jun; 73():326-338. PubMed ID: 29649641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of marrow mesenchymal stem cell-derived extracellular matrix in peripheral nerve tissue engineering.
    Gu Y; Li Z; Huang J; Wang H; Gu X; Gu J
    J Tissue Eng Regen Med; 2017 Aug; 11(8):2250-2260. PubMed ID: 26777754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Joint use of a chitosan/PLGA scaffold and MSCs to bridge an extra large gap in dog sciatic nerve.
    Xue C; Hu N; Gu Y; Yang Y; Liu Y; Liu J; Ding F; Gu X
    Neurorehabil Neural Repair; 2012 Jan; 26(1):96-106. PubMed ID: 21947688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Strategies in Tissue Engineering for Guided Peripheral Nerve Regeneration.
    Belanger K; Dinis TM; Taourirt S; Vidal G; Kaplan DL; Egles C
    Macromol Biosci; 2016 Apr; 16(4):472-81. PubMed ID: 26748820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomimetic neural scaffolds: a crucial step towards optimal peripheral nerve regeneration.
    Du J; Chen H; Qing L; Yang X; Jia X
    Biomater Sci; 2018 May; 6(6):1299-1311. PubMed ID: 29725688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Incorporation and release of dual growth factors for nerve tissue engineering using nanofibrous bicomponent scaffolds.
    Liu C; Wang C; Zhao Q; Li X; Xu F; Yao X; Wang M
    Biomed Mater; 2018 May; 13(4):044107. PubMed ID: 29537390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering peripheral nerve repair.
    Marquardt LM; Sakiyama-Elbert SE
    Curr Opin Biotechnol; 2013 Oct; 24(5):887-92. PubMed ID: 23790730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biocompatibility evaluation of electrospun aligned poly (propylene carbonate) nanofibrous scaffolds with peripheral nerve tissues and cells in vitro.
    Wang Y; Zhao Z; Zhao B; Qi HX; Peng J; Zhang L; Xu WJ; Hu P; Lu SB
    Chin Med J (Engl); 2011 Aug; 124(15):2361-6. PubMed ID: 21933569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrospun silk fibroin-based neural scaffold for bridging a long sciatic nerve gap in dogs.
    Xue C; Zhu H; Tan D; Ren H; Gu X; Zhao Y; Zhang P; Sun Z; Yang Y; Gu J; Gu Y; Gu X
    J Tissue Eng Regen Med; 2018 Feb; 12(2):e1143-e1153. PubMed ID: 28485084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repairing Peripheral Nerves: Is there a Role for Carbon Nanotubes?
    Oprych KM; Whitby RL; Mikhalovsky SV; Tomlins P; Adu J
    Adv Healthc Mater; 2016 Jun; 5(11):1253-71. PubMed ID: 27027923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of tissue-engineered nerve grafts consisting of a chitosan/poly(lactic-co-glycolic acid)-based scaffold included with bone marrow mesenchymal cells for bridging 50-mm dog sciatic nerve gaps.
    Ding F; Wu J; Yang Y; Hu W; Zhu Q; Tang X; Liu J; Gu X
    Tissue Eng Part A; 2010 Dec; 16(12):3779-90. PubMed ID: 20666610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Matrices, scaffolds & carriers for cell delivery in nerve regeneration.
    Wang ZZ; Sakiyama-Elbert SE
    Exp Neurol; 2019 Sep; 319():112837. PubMed ID: 30291854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural tissue engineering options for peripheral nerve regeneration.
    Gu X; Ding F; Williams DF
    Biomaterials; 2014 Aug; 35(24):6143-56. PubMed ID: 24818883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regeneration of the peripheral nerve via multifunctional electrospun scaffolds.
    Ghane N; Khalili S; Nouri Khorasani S; Esmaeely Neisiany R; Das O; Ramakrishna S
    J Biomed Mater Res A; 2021 Apr; 109(4):437-452. PubMed ID: 32856425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Materials for peripheral nerve repair constructs: Natural proteins or synthetic polymers?
    Gregory H; Phillips JB
    Neurochem Int; 2021 Feb; 143():104953. PubMed ID: 33388359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoscaffolds in promoting regeneration of the peripheral nervous system.
    Aijie C; Xuan L; Huimin L; Yanli Z; Yiyuan K; Yuqing L; Longquan S
    Nanomedicine (Lond); 2018 May; 13(9):1067-1085. PubMed ID: 29790811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.