BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 29772275)

  • 1. 5C-ID: Increased resolution Chromosome-Conformation-Capture-Carbon-Copy with in situ 3C and double alternating primer design.
    Kim JH; Titus KR; Gong W; Beagan JA; Cao Z; Phillips-Cremins JE
    Methods; 2018 Jun; 142():39-46. PubMed ID: 29772275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromosome Conformation Capture Carbon Copy (5C) in Budding Yeast.
    Belton JM; Dekker J
    Cold Spring Harb Protoc; 2015 Jun; 2015(6):593-8. PubMed ID: 26034306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determining spatial chromatin organization of large genomic regions using 5C technology.
    van Berkum NL; Dekker J
    Methods Mol Biol; 2009; 567():189-213. PubMed ID: 19588094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromosome conformation capture carbon copy technology.
    Dostie J; Zhan Y; Dekker J
    Curr Protoc Mol Biol; 2007 Oct; Chapter 21():Unit 21.14. PubMed ID: 18265398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From cells to chromatin: capturing snapshots of genome organization with 5C technology.
    Ferraiuolo MA; Sanyal A; Naumova N; Dekker J; Dostie J
    Methods; 2012 Nov; 58(3):255-67. PubMed ID: 23137922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling genome-wide topological associating domains in mouse embryonic stem cells.
    Zhan Y; Giorgetti L; Tiana G
    Chromosome Res; 2017 Mar; 25(1):5-14. PubMed ID: 28108933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tethered Chromosome Conformation Capture Sequencing in Triticeae: A Valuable Tool for Genome Assembly.
    Himmelbach A; Walde I; Mascher M; Stein N
    Bio Protoc; 2018 Aug; 8(15):e2955. PubMed ID: 34395764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Randomized ligation control for chromosome conformation capture.
    Belton JM; Dekker J
    Cold Spring Harb Protoc; 2015 Jun; 2015(6):587-92. PubMed ID: 26034305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of the spatial structure and interactions of the genome at sub-kilobase-pair resolution using T2C.
    Kolovos P; Brouwer RWW; Kockx CEM; Lesnussa M; Kepper N; Zuin J; Imam AMA; van de Werken HJG; Wendt KS; Knoch TA; van IJcken WFJ; Grosveld F
    Nat Protoc; 2018 Mar; 13(3):459-477. PubMed ID: 29419817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromosome conformation capture assays in bacteria.
    Umbarger MA
    Methods; 2012 Nov; 58(3):212-20. PubMed ID: 22776362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detecting Long-Range Enhancer-Promoter Interactions by Quantitative Chromosome Conformation Capture.
    Deng W; Blobel GA
    Methods Mol Biol; 2017; 1468():51-62. PubMed ID: 27662870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Torrent of data: mapping chromatin organization using 5C and high-throughput sequencing.
    Fraser J; Ethier SD; Miura H; Dostie J
    Methods Enzymol; 2012; 513():113-41. PubMed ID: 22929767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Principles of Chromosome Architecture Revealed by Hi-C.
    Eagen KP
    Trends Biochem Sci; 2018 Jun; 43(6):469-478. PubMed ID: 29685368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromosome Conformation Capture Followed by Genome-Wide Sequencing (Hi-C) in Drosophila Embryos.
    Cardamone F; Zhan Y; Iovino N; Zenk F
    Methods Mol Biol; 2023; 2655():41-55. PubMed ID: 37212987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hi-C 3.0: Improved Protocol for Genome-Wide Chromosome Conformation Capture.
    Lafontaine DL; Yang L; Dekker J; Gibcus JH
    Curr Protoc; 2021 Jul; 1(7):e198. PubMed ID: 34286910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Three-dimensional chromosome conformation capture and its derived technologies].
    Tian H; Yang Z; Xu X; Liu L
    Sheng Wu Gong Cheng Xue Bao; 2020 Oct; 36(10):2040-2050. PubMed ID: 33169569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3DeFDR: statistical methods for identifying cell type-specific looping interactions in 5C and Hi-C data.
    Fernandez LR; Gilgenast TG; Phillips-Cremins JE
    Genome Biol; 2020 Aug; 21(1):219. PubMed ID: 32859248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping networks of physical interactions between genomic elements using 5C technology.
    Dostie J; Dekker J
    Nat Protoc; 2007; 2(4):988-1002. PubMed ID: 17446898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements.
    Dostie J; Richmond TA; Arnaout RA; Selzer RR; Lee WL; Honan TA; Rubio ED; Krumm A; Lamb J; Nusbaum C; Green RD; Dekker J
    Genome Res; 2006 Oct; 16(10):1299-309. PubMed ID: 16954542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Capturing Chromosome Conformation Across Length Scales.
    Yang L; Akgol Oksuz B; Dekker J; Gibcus JH
    J Vis Exp; 2023 Jan; (191):. PubMed ID: 36744801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.