BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 29772283)

  • 1. Amphiphilic polyurethane hydrogels as smart carriers for acidic hydrophobic drugs.
    Polo Fonseca L; Trinca RB; Felisberti MI
    Int J Pharm; 2018 Jul; 546(1-2):106-114. PubMed ID: 29772283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An injectable, dual pH and oxidation-responsive supramolecular hydrogel for controlled dual drug delivery.
    Cheng X; Jin Y; Sun T; Qi R; Li H; Fan W
    Colloids Surf B Biointerfaces; 2016 May; 141():44-52. PubMed ID: 26851440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silk fibroin/copolymer composite hydrogels for the controlled and sustained release of hydrophobic/hydrophilic drugs.
    Zhong T; Jiang Z; Wang P; Bie S; Zhang F; Zuo B
    Int J Pharm; 2015 Oct; 494(1):264-70. PubMed ID: 26283278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodegradable polyurethane micelles with pH and reduction responsive properties for intracellular drug delivery.
    Guan Y; Su Y; Zhao L; Meng F; Wang Q; Yao Y; Luo J
    Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():1221-1230. PubMed ID: 28415410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Polyethylene Glycol on Properties and Drug Encapsulation-Release Performance of Biodegradable/Cytocompatible Agarose-Polyethylene Glycol-Polycaprolactone Amphiphilic Co-Network Gels.
    Chandel AK; Kumar CU; Jewrajka SK
    ACS Appl Mater Interfaces; 2016 Feb; 8(5):3182-92. PubMed ID: 26760672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inflammation targeted chitosan-based hydrogel for controlled release of diclofenac sodium.
    Gull N; Khan SM; Butt OM; Islam A; Shah A; Jabeen S; Khan SU; Khan A; Khan RU; Butt MTZ
    Int J Biol Macromol; 2020 Nov; 162():175-187. PubMed ID: 32562726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lysine-derived, pH-sensitive and biodegradable poly(beta-aminoester urethane) networks and their local drug delivery behaviour.
    Tamer Y; Chen B
    Soft Matter; 2018 Feb; 14(7):1195-1209. PubMed ID: 29349467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. pH-controlled nanoaggregation in amphiphilic polymer co-networks.
    Longo GS; Olvera de la Cruz M; Szleifer I
    ACS Nano; 2013 Mar; 7(3):2693-704. PubMed ID: 23438375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Composite chitosan hydrogels for extended release of hydrophobic drugs.
    Delmar K; Bianco-Peled H
    Carbohydr Polym; 2016 Jan; 136():570-80. PubMed ID: 26572389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multifunctional interpenetrating polymer network hydrogels based on methacrylated alginate for the delivery of small molecule drugs and sustained release of protein.
    Zhao J; Zhao X; Guo B; Ma PX
    Biomacromolecules; 2014 Sep; 15(9):3246-52. PubMed ID: 25102223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable drug delivery using chemoselective functionalization of hydrogels.
    Mauri E; Rossi F; Sacchetti A
    Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():851-7. PubMed ID: 26838916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polysaccharides based superabsorbent hydrogel from Linseed: Dynamic swelling, stimuli responsive on-off switching and drug release.
    Haseeb MT; Hussain MA; Yuk SH; Bashir S; Nauman M
    Carbohydr Polym; 2016 Jan; 136():750-6. PubMed ID: 26572409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature-responsive nanogel multilayers of poly(N-vinylcaprolactam) for topical drug delivery.
    Zavgorodnya O; Carmona-Moran CA; Kozlovskaya V; Liu F; Wick TM; Kharlampieva E
    J Colloid Interface Sci; 2017 Nov; 506():589-602. PubMed ID: 28759859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual pH-Responsive Hydrogel Actuator for Lipophilic Drug Delivery.
    Han Z; Wang P; Mao G; Yin T; Zhong D; Yiming B; Hu X; Jia Z; Nian G; Qu S; Yang W
    ACS Appl Mater Interfaces; 2020 Mar; 12(10):12010-12017. PubMed ID: 32053341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. pH-responsive, lysine-based hydrogels for the oral delivery of a wide size range of molecules.
    Watkins KA; Chen R
    Int J Pharm; 2015 Jan; 478(2):496-503. PubMed ID: 25490181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of Mesalamine Nanoparticles Using a Novel Polyurethane- Chitosan Graft Copolymer.
    Mirabbasi F; Dorkoosh FA; Moghimi A; Shahsavari S; Babanejad N; Seifirad S
    Pharm Nanotechnol; 2017; 5(3):230-239. PubMed ID: 29110631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intra-articular Administration of Chitosan Thermosensitive In Situ Hydrogels Combined With Diclofenac Sodium-Loaded Alginate Microspheres.
    Qi X; Qin X; Yang R; Qin J; Li W; Luan K; Wu Z; Song L
    J Pharm Sci; 2016 Jan; 105(1):122-30. PubMed ID: 26852847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile preparation of pH-responsive polyurethane nanocarrier for oral delivery.
    Nabid MR; Omrani I
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():532-7. PubMed ID: 27612744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New amphiphilic and pH-sensitive hydrogel for controlled release of a model poorly water-soluble drug.
    Colinet I; Dulong V; Mocanu G; Picton L; Le Cerf D
    Eur J Pharm Biopharm; 2009 Nov; 73(3):345-50. PubMed ID: 19631739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel composite matrix based on polymeric micelle and hydrogel as a drug carrier for the controlled release of dual drugs.
    Anirudhan TS; Parvathy J; Nair AS
    Carbohydr Polym; 2016 Jan; 136():1118-27. PubMed ID: 26572454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.