These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 29772501)
1. Insights into the effect of the catalytic functions on selective production of ethylene glycol from lignocellulosic biomass over carbon supported ruthenium and tungsten catalysts. Ribeiro LS; Órfão JJM; Pereira MFR Bioresour Technol; 2018 Sep; 263():402-409. PubMed ID: 29772501 [TBL] [Abstract][Full Text] [Related]
2. One-pot conversion of cellulose to ethylene glycol with multifunctional tungsten-based catalysts. Wang A; Zhang T Acc Chem Res; 2013 Jul; 46(7):1377-86. PubMed ID: 23421609 [TBL] [Abstract][Full Text] [Related]
3. Chemocatalytic Conversion of Cellulosic Biomass to Methyl Glycolate, Ethylene Glycol, and Ethanol. Xu G; Wang A; Pang J; Zhao X; Xu J; Lei N; Wang J; Zheng M; Yin J; Zhang T ChemSusChem; 2017 Apr; 10(7):1390-1394. PubMed ID: 28266799 [TBL] [Abstract][Full Text] [Related]
4. Catalytic conversion of cellulosic biomass to ethylene glycol: Effects of inorganic impurities in biomass. Pang J; Zheng M; Sun R; Song L; Wang A; Wang X; Zhang T Bioresour Technol; 2015 Jan; 175():424-9. PubMed ID: 25459851 [TBL] [Abstract][Full Text] [Related]
5. Conversion of biomass-derived sorbitol to glycols over carbon-materials supported Ru-based catalysts. Guo X; Guan J; Li B; Wang X; Mu X; Liu H Sci Rep; 2015 Nov; 5():16451. PubMed ID: 26578426 [TBL] [Abstract][Full Text] [Related]
6. Catalytic conversion of cellulose to ethylene glycol over a low-cost binary catalyst of Raney Ni and tungstic acid. Tai Z; Zhang J; Wang A; Pang J; Zheng M; Zhang T ChemSusChem; 2013 Apr; 6(4):652-8. PubMed ID: 23460602 [TBL] [Abstract][Full Text] [Related]
7. Effect of the surface acid sites of tungsten trioxide for highly selective hydrogenation of cellulose to ethylene glycol. Li N; Ji Z; Wei L; Zheng Y; Shen Q; Ma Q; Tan M; Zhan M; Zhou J Bioresour Technol; 2018 Sep; 264():58-65. PubMed ID: 29787882 [TBL] [Abstract][Full Text] [Related]
8. Hydrogenation of p-chloronitrobenzene over nanostructured-carbon-supported ruthenium catalysts. Oubenali M; Vanucci G; Machado B; Kacimi M; Ziyad M; Faria J; Raspolli-Galetti A; Serp P ChemSusChem; 2011 Jul; 4(7):950-6. PubMed ID: 21656695 [TBL] [Abstract][Full Text] [Related]
9. From Barley Straw to Valuable Polyols: A Sustainable Process Using Ethanol/Water Mixtures and Hydrogenolysis over Ruthenium-Tungsten Catalyst. Fabičovicová K; Lucas M; Claus P ChemSusChem; 2016 Oct; 9(19):2804-2815. PubMed ID: 27560287 [TBL] [Abstract][Full Text] [Related]
11. Electrocatalytic oxidation of ethylene glycol on Pt and Pt-Ru nanoparticles modified multi-walled carbon nanotubes. Selvaraj V; Vinoba M; Alagar M J Colloid Interface Sci; 2008 Jun; 322(2):537-44. PubMed ID: 18402968 [TBL] [Abstract][Full Text] [Related]
12. Transition metal-tungsten bimetallic catalysts for the conversion of cellulose into ethylene glycol. Zheng MY; Wang AQ; Ji N; Pang JF; Wang XD; Zhang T ChemSusChem; 2010; 3(1):63-6. PubMed ID: 19998362 [No Abstract] [Full Text] [Related]
13. Tungsten trioxide promoted selective conversion of cellulose into propylene glycol and ethylene glycol on a ruthenium catalyst. Liu Y; Luo C; Liu H Angew Chem Int Ed Engl; 2012 Mar; 51(13):3249-53. PubMed ID: 22368071 [No Abstract] [Full Text] [Related]
14. One-pot catalytic conversion of cellulose into polyols with Pt/CNTs catalysts. Yang L; Yan X; Wang Q; Wang Q; Xia H Carbohydr Res; 2015 Mar; 404():87-92. PubMed ID: 25665784 [TBL] [Abstract][Full Text] [Related]
15. Direct hydrogenation of biomass-derived butyric acid to n-butanol over a ruthenium-tin bimetallic catalyst. Lee JM; Upare PP; Chang JS; Hwang YK; Lee JH; Hwang DW; Hong DY; Lee SH; Jeong MG; Kim YD; Kwon YU ChemSusChem; 2014 Nov; 7(11):2998-3001. PubMed ID: 25123894 [TBL] [Abstract][Full Text] [Related]
16. Lignin-First Depolymerization of Lignocellulose into Monophenols over Carbon Nanotube-Supported Ruthenium: Impact of Lignin Sources. Su S; Xiao LP; Chen X; Wang S; Chen XH; Guo Y; Zhai SR ChemSusChem; 2022 Jun; 15(12):e202200365. PubMed ID: 35438245 [TBL] [Abstract][Full Text] [Related]
17. Catalytic amino acid production from biomass-derived intermediates. Deng W; Wang Y; Zhang S; Gupta KM; Hülsey MJ; Asakura H; Liu L; Han Y; Karp EM; Beckham GT; Dyson PJ; Jiang J; Tanaka T; Wang Y; Yan N Proc Natl Acad Sci U S A; 2018 May; 115(20):5093-5098. PubMed ID: 29712826 [TBL] [Abstract][Full Text] [Related]
18. Insight into the efficient catalytic conversion of biomass to EG and 1,2-PG over W-Ni bimetallic catalyst. Li MQ; Ma YL; Ma XX; Sun YG; Song Z RSC Adv; 2018 Mar; 8(20):10907-10913. PubMed ID: 35541540 [TBL] [Abstract][Full Text] [Related]
19. Direct conversion of cellulose into sorbitol catalyzed by a bifunctional catalyst. Li Z; Liu Y; Liu C; Wu S; Wei W Bioresour Technol; 2019 Feb; 274():190-197. PubMed ID: 30504102 [TBL] [Abstract][Full Text] [Related]
20. A new 3D mesoporous carbon replicated from commercial silica as a catalyst support for direct conversion of cellulose into ethylene glycol. Zhang Y; Wang A; Zhang T Chem Commun (Camb); 2010 Feb; 46(6):862-4. PubMed ID: 20107631 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]