These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 29772548)
1. Epigenetic regulation of genes involved in the reverse cholesterol transport through interaction with miRNAs. Zaiou M; Rihn BH; Bakillah A Front Biosci (Landmark Ed); 2018 Jun; 23(11):2090-2105. PubMed ID: 29772548 [TBL] [Abstract][Full Text] [Related]
2. microRNAs and HDL life cycle. Canfrán-Duque A; Ramírez CM; Goedeke L; Lin CS; Fernández-Hernando C Cardiovasc Res; 2014 Aug; 103(3):414-22. PubMed ID: 24895349 [TBL] [Abstract][Full Text] [Related]
3. microRNAs in lipoprotein metabolism and cardiometabolic disorders. Rotllan N; Price N; Pati P; Goedeke L; Fernández-Hernando C Atherosclerosis; 2016 Mar; 246():352-60. PubMed ID: 26828754 [TBL] [Abstract][Full Text] [Related]
4. MicroRNAs and High-Density Lipoprotein Cholesterol Metabolism. Ono K; Horie T; Nishino T; Baba O; Kuwabara Y; Kimura T Int Heart J; 2015; 56(4):365-71. PubMed ID: 26084456 [TBL] [Abstract][Full Text] [Related]
5. Asymptomatic individuals with high HDL-C levels overexpress ABCA1 and ABCG1 and present miR-33a dysregulation in peripheral blood mononuclear cells. Scherrer DZ; Zago VH; Parra ES; Avansini S; Panzoldo NB; Alexandre F; Baracat J; Nakandakare ER; Quintão EC; de Faria EC Gene; 2015 Oct; 570(1):50-6. PubMed ID: 26051418 [TBL] [Abstract][Full Text] [Related]
6. Foam cells in atherosclerosis. Yu XH; Fu YC; Zhang DW; Yin K; Tang CK Clin Chim Acta; 2013 Sep; 424():245-52. PubMed ID: 23782937 [TBL] [Abstract][Full Text] [Related]
7. Expression levels of miR-27a, miR-329, ABCA1, and ABCG1 genes in peripheral blood mononuclear cells and their correlation with serum levels of oxidative stress and hs-CRP in the patients with coronary artery disease. Rafiei A; Ferns GA; Ahmadi R; Khaledifar A; Rahimzadeh-Fallah T; Mohmmad-Rezaei M; Emami S; Bagheri N IUBMB Life; 2021 Jan; 73(1):223-237. PubMed ID: 33263223 [TBL] [Abstract][Full Text] [Related]
8. ABCA1 and ABCG1 as potential therapeutic targets for the prevention of atherosclerosis. Matsuo M J Pharmacol Sci; 2022 Feb; 148(2):197-203. PubMed ID: 35063134 [TBL] [Abstract][Full Text] [Related]
10. Hepatic Overexpression of Endothelial Lipase Lowers High-Density Lipoprotein but Maintains Reverse Cholesterol Transport in Mice: Role of Scavenger Receptor Class B Type I/ATP-Binding Cassette Transporter A1-Dependent Pathways. Takiguchi S; Ayaori M; Yakushiji E; Nishida T; Nakaya K; Sasaki M; Iizuka M; Uto-Kondo H; Terao Y; Yogo M; Komatsu T; Ogura M; Ikewaki K Arterioscler Thromb Vasc Biol; 2018 Jul; 38(7):1454-1467. PubMed ID: 29748333 [TBL] [Abstract][Full Text] [Related]
11. Macrophage miR-34a Is a Key Regulator of Cholesterol Efflux and Atherosclerosis. Xu Y; Xu Y; Zhu Y; Sun H; Juguilon C; Li F; Fan D; Yin L; Zhang Y Mol Ther; 2020 Jan; 28(1):202-216. PubMed ID: 31604677 [TBL] [Abstract][Full Text] [Related]
13. MCP-1 impacts RCT by repressing ABCA1, ABCG1, and SR-BI through PI3K/Akt posttranslational regulation in HepG2 cells. Huang CX; Zhang YL; Wang JF; Jiang JY; Bao JL J Lipid Res; 2013 May; 54(5):1231-40. PubMed ID: 23402987 [TBL] [Abstract][Full Text] [Related]
14. MicroRNA-20a/b regulates cholesterol efflux through post-transcriptional repression of ATP-binding cassette transporter A1. Liang B; Wang X; Song X; Bai R; Yang H; Yang Z; Xiao C; Bian Y Biochim Biophys Acta Mol Cell Biol Lipids; 2017 Sep; 1862(9):929-938. PubMed ID: 28602962 [TBL] [Abstract][Full Text] [Related]
15. Macrophage ABCA1 and ABCG1, but not SR-BI, promote macrophage reverse cholesterol transport in vivo. Wang X; Collins HL; Ranalletta M; Fuki IV; Billheimer JT; Rothblat GH; Tall AR; Rader DJ J Clin Invest; 2007 Aug; 117(8):2216-24. PubMed ID: 17657311 [TBL] [Abstract][Full Text] [Related]
16. Simvastatin reduces atherogenesis and promotes the expression of hepatic genes associated with reverse cholesterol transport in apoE-knockout mice fed high-fat diet. Song G; Liu J; Zhao Z; Yu Y; Tian H; Yao S; Li G; Qin S Lipids Health Dis; 2011 Jan; 10():8. PubMed ID: 21241519 [TBL] [Abstract][Full Text] [Related]
17. ATP-binding cassette transporters A1 and G1, HDL metabolism, cholesterol efflux, and inflammation: important targets for the treatment of atherosclerosis. Ye D; Lammers B; Zhao Y; Meurs I; Van Berkel TJ; Van Eck M Curr Drug Targets; 2011 May; 12(5):647-60. PubMed ID: 21039336 [TBL] [Abstract][Full Text] [Related]
18. Identification of microRNAs 758 and 33b as potential modulators of ABCA1 expression in human atherosclerotic plaques. Mandolini C; Santovito D; Marcantonio P; Buttitta F; Bucci M; Ucchino S; Mezzetti A; Cipollone F Nutr Metab Cardiovasc Dis; 2015 Feb; 25(2):202-9. PubMed ID: 25445880 [TBL] [Abstract][Full Text] [Related]
19. Molecular mechanisms responsible for the reduced expression of cholesterol transporters from macrophages by low-dose endotoxin. Maitra U; Li L Arterioscler Thromb Vasc Biol; 2013 Jan; 33(1):24-33. PubMed ID: 23117655 [TBL] [Abstract][Full Text] [Related]
20. Reverse Cholesterol Transport Pathway and Cholesterol Efflux in Diabetic Retinopathy. Zhang X; Wang K; Zhu L; Wang Q J Diabetes Res; 2021; 2021():8746114. PubMed ID: 34746320 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]