These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 29772710)
1. Effective NiMn Nanoparticles-Functionalized Carbon Felt as an Effective Anode for Direct Urea Fuel Cells. Barakat NAM; Alajami M; Ghouri ZK; Al-Meer S Nanomaterials (Basel); 2018 May; 8(5):. PubMed ID: 29772710 [TBL] [Abstract][Full Text] [Related]
2. NiSn nanoparticle-incorporated carbon nanofibers as efficient electrocatalysts for urea oxidation and working anodes in direct urea fuel cells. Barakat NAM; Amen MT; Al-Mubaddel FS; Karim MR; Alrashed M J Adv Res; 2019 Mar; 16():43-53. PubMed ID: 30899588 [TBL] [Abstract][Full Text] [Related]
3. Investigation of Porous Metal-Based 3D-Printed Anode GDLs for Tubular High Temperature Proton Exchange Membrane Fuel Cells. Bermúdez Agudelo MC; Hampe M; Reiber T; Abele E Materials (Basel); 2020 May; 13(9):. PubMed ID: 32370006 [TBL] [Abstract][Full Text] [Related]
4. Nickel-cobalt bimetallic anode catalysts for direct urea fuel cell. Xu W; Zhang H; Li G; Wu Z Sci Rep; 2014 Aug; 4():5863. PubMed ID: 25168632 [TBL] [Abstract][Full Text] [Related]
5. Pt-CeO2 coating of carbon nanotubes grown on anode gas diffusion layer of the polymer electrolyte membrane fuel cell. Fiala R; Khalakhan I; Matolínová I; Václavů M; Vorokhta M; Sofer Z; Huber S; Potin V; Matolín V J Nanosci Nanotechnol; 2011 Jun; 11(6):5062-7. PubMed ID: 21770144 [TBL] [Abstract][Full Text] [Related]
6. High performance gas diffusion layer with hydrophobic nanolayer under a supersaturated operation condition for fuel cells. Ko TJ; Kim SH; Hong BK; Lee KR; Oh KH; Moon MW ACS Appl Mater Interfaces; 2015 Mar; 7(9):5506-13. PubMed ID: 25689726 [TBL] [Abstract][Full Text] [Related]
7. Effect of Commercial Gas Diffusion Layers on Catalyst Durability of Polymer Electrolyte Fuel Cells in Varied Cathode Gas Environment. Khedekar K; Satjaritanun P; Stewart S; Braaten J; Atanassov P; Tamura N; Cheng L; Johnston CM; Zenyuk IV Small; 2022 Aug; 18(33):e2201750. PubMed ID: 35871500 [TBL] [Abstract][Full Text] [Related]
8. Cobalt/copper-decorated carbon nanofibers as novel non-precious electrocatalyst for methanol electrooxidation. Barakat NA; El-Newehy M; Al-Deyab SS; Kim HY Nanoscale Res Lett; 2014 Jan; 9(1):2. PubMed ID: 24387682 [TBL] [Abstract][Full Text] [Related]
9. Metal-organic framework-derived Ni@C and NiO@C as anode catalysts for urea fuel cells. Tran TQN; Park BJ; Yun WH; Duong TN; Yoon HH Sci Rep; 2020 Jan; 10(1):278. PubMed ID: 31937844 [TBL] [Abstract][Full Text] [Related]
10. Molybdenum carbide/Ni nanoparticles-incorporated carbon nanofibers as effective non-precious catalyst for urea electrooxidation reaction. Barakat NAM; Ali MA Sci Rep; 2022 Dec; 12(1):22574. PubMed ID: 36585465 [TBL] [Abstract][Full Text] [Related]
11. Enhanced Electrochemical Properties of Catalyst by Phosphorous Addition for Direct Urea Fuel Cell. Lee U; Lee YN; Yoon YS Front Chem; 2020; 8():777. PubMed ID: 33195019 [TBL] [Abstract][Full Text] [Related]
12. Performance Enhancement of Proton Exchange Membrane Fuel Cell through Carbon Nanofibers Grown In Situ on Carbon Paper. Liu C; Li S Molecules; 2023 Mar; 28(6):. PubMed ID: 36985780 [TBL] [Abstract][Full Text] [Related]
13. Manufacturing protocol and post processing of ultra-thin gas diffusion layer using advanced scanning techniques. Pourrahmani H; Van Herle J Sci Rep; 2024 Jun; 14(1):13078. PubMed ID: 38844570 [TBL] [Abstract][Full Text] [Related]
14. A Super Uniform Hydrophobic Gas Diffusion Layer for a Proton Exchange Membrane Fuel Cell. Xiao Y; Li X; Wang Q; Yang Y; Li B; Ming P; Zhang C; Dai H ACS Appl Mater Interfaces; 2023 Aug; 15(31):38090-38099. PubMed ID: 37505078 [TBL] [Abstract][Full Text] [Related]
15. Carbon Nanofibers-Sheathed Graphite Rod Anode and Hydrophobic Cathode for Improved Performance Industrial Wastewater-Driven Microbial Fuel Cells. Barakat NAM; Ali RH; Kim HY; Nassar MM; Fadali OA; Tolba GMK; Moustafa HM; Ali MA Nanomaterials (Basel); 2022 Nov; 12(22):. PubMed ID: 36432248 [TBL] [Abstract][Full Text] [Related]
16. Analyzing Temperature Distribution, Mass Transport, and Cell Performance in PEM Fuel Cells with Emphasis on GDL Face Permeability and Thermal Contact Resistance Parameters. Binyamin B; Lim O ACS Omega; 2024 Jan; 9(1):1516-1534. PubMed ID: 38222648 [TBL] [Abstract][Full Text] [Related]
17. A Nanofiber-Based Gas Diffusion Layer for Improved Performance in Air Cathode Microbial Fuel Cells. Massaglia G; Serra T; Pirri FC; Quaglio M Nanomaterials (Basel); 2023 Oct; 13(20):. PubMed ID: 37887951 [TBL] [Abstract][Full Text] [Related]
18. Modifying the Catalyst Layer Using Polyvinyl Alcohol for the Performance Improvement of Proton Exchange Membrane Fuel Cells under Low Humidity Operations. Jienkulsawad P; Chen YS; Arpornwichanop A Polymers (Basel); 2020 Aug; 12(9):. PubMed ID: 32825148 [TBL] [Abstract][Full Text] [Related]
19. High-Power Abiotic Direct Glucose Fuel Cell Using a Gold-Platinum Bimetallic Anode Catalyst. Torigoe K; Takahashi M; Tsuchiya K; Iwabata K; Ichihashi T; Sakaguchi K; Sugawara F; Abe M ACS Omega; 2018 Dec; 3(12):18323-18333. PubMed ID: 31458409 [TBL] [Abstract][Full Text] [Related]
20. Improvement in physical properties of single-layer gas diffusion layers using graphene for proton exchange membrane fuel cells. Lee HF; Chang JY; Chen-Yang YW RSC Adv; 2018 Jun; 8(40):22506-22514. PubMed ID: 35539731 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]