These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 29772915)

  • 1. A comparison of the antifouling performance of air plasma spray (APS) ceramic and high velocity oxygen fuel (HVOF) coatings for use in marine hydraulic applications.
    Piola R; Ang ASM; Leigh M; Wade SA
    Biofouling; 2018 May; 34(5):479-491. PubMed ID: 29772915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal spray processes influencing surface chemistry and in-vitro hemocompatibility of hydroxyapatite-based orthopedic implants.
    Shankar D; Jayaganesh K; Gowda N; Lakshmi KS; Jayanthi KJ; Jambagi SC
    Biomater Adv; 2024 Apr; 158():213791. PubMed ID: 38295645
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of bone implants' coating mechanical properties on osseointegration: In vivo, in vitro, and histological investigations.
    Ghadami F; Saber-Samandari S; Rouhi G; Amani Hamedani M; Dehghan MM; Farzad Mohajeri S; Mashhadi-Abbas F; Gholami H
    J Biomed Mater Res A; 2018 Oct; 106(10):2679-2691. PubMed ID: 29901269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro performance of ceramic coatings obtained by high velocity oxy-fuel spray.
    Melero H; Garcia-Giralt N; Fernández J; Díez-Pérez A; Guilemany JM
    Biomed Mater Eng; 2014; 24(5):1781-91. PubMed ID: 25201392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmentally benign sol-gel antifouling and foul-releasing coatings.
    Detty MR; Ciriminna R; Bright FV; Pagliaro M
    Acc Chem Res; 2014 Feb; 47(2):678-87. PubMed ID: 24397288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Influence of Oxygen Flow Rate and Spray Distance on the Porosity of HVOF Coating and Its Effects on Corrosion-A Review.
    Raza A; Ahmad F; Badri TM; Raza MR; Malik K
    Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using encrusting bryozoan adhesion to evaluate the efficacy of fouling-release marine coatings.
    Waltz GT; Hunsucker KZ; Swain G; Wendt DE
    Biofouling; 2020 Nov; 36(10):1149-1158. PubMed ID: 33342296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of the Spray Distance on the Properties of High Velocity Oxygen-Fuel (HVOF) Sprayed WC-12Co Coatings.
    Bang SS; Park YC; Lee JW; Hyun SK; Kim TB; Lee JK; Han JW; Jung TK
    J Nanosci Nanotechnol; 2018 Mar; 18(3):1931-1934. PubMed ID: 29448686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of "inert" surface chemistry in marine biofouling prevention.
    Rosenhahn A; Schilp S; Kreuzer HJ; Grunze M
    Phys Chem Chem Phys; 2010 May; 12(17):4275-86. PubMed ID: 20407695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Temperature Corrosion of APS- and HVOF-Coated Nickel-Based Super Alloy under Air Oxidation and Melted Salt Domains.
    Alnaser IA; Yunus M; Alfattani R; Alamro T
    Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of high heat resistant coatings by using gas tunnel type plasma spraying.
    Kobayashi A; Ando Y; Kurokawa K
    J Nanosci Nanotechnol; 2012 Jun; 12(6):5106-10. PubMed ID: 22905586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An experimental investigation into the surface and hydrodynamic characteristics of marine coatings with mimicked hull roughness ranges.
    Yeginbayeva IA; Atlar M
    Biofouling; 2018 Oct; 34(9):1001-1019. PubMed ID: 30537869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Progress in biomimetic leverages for marine antifouling using nanocomposite coatings.
    Selim MS; El-Safty SA; Shenashen MA; Higazy SA; Elmarakbi A
    J Mater Chem B; 2020 May; 8(17):3701-3732. PubMed ID: 32141469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using ultraviolet light for improved antifouling performance on ship hull coatings.
    Hunsucker KZ; Braga C; Gardner H; Jongerius M; Hietbrink R; Salters B; Swain G
    Biofouling; 2019 Jul; 35(6):658-668. PubMed ID: 31385534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of In-Flight Particle Properties and Mechanical Performances of HVOF-Sprayed NiCr-Cr
    Gui L; Wang B; Cai R; Yu Z; Liu M; Zhu Q; Xie Y; Liu S; Killinger A
    Materials (Basel); 2023 Sep; 16(18):. PubMed ID: 37763556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hot Corrosion Behavior of TWAS and HVOF NiCr-Based Coatings in Molten Salt.
    Lencová K; Frank Netrvalová M; Vostřák M; Lukáč F; Mušálek R; Česánek Z; Houdková Š
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chitosan-zinc oxide nanocomposite coatings for the prevention of marine biofouling.
    Al-Naamani L; Dobretsov S; Dutta J; Burgess JG
    Chemosphere; 2017 Feb; 168():408-417. PubMed ID: 27810541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of environmentally safe antifouling coatings using nano-MnO
    Moawad MN; El-Damhogy KA; Ghobashy MM; Radwan IM; Alabssawy AN
    Sci Rep; 2023 Nov; 13(1):19289. PubMed ID: 37935757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amphiphilic triblock copolymers with PEGylated hydrocarbon structures as environmentally friendly marine antifouling and fouling-release coatings.
    Zhou Z; Calabrese DR; Taylor W; Finlay JA; Callow ME; Callow JA; Fischer D; Kramer EJ; Ober CK
    Biofouling; 2014; 30(5):589-604. PubMed ID: 24730510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The use of proactive in-water grooming to improve the performance of ship hull antifouling coatings.
    Tribou M; Swain G
    Biofouling; 2010 Jan; 26(1):47-56. PubMed ID: 20390556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.