BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 29773063)

  • 21. Cyclizing Painkillers: Development of Backbone-Cyclic TAPS Analogs.
    Talhami A; Swed A; Hess S; Ovadia O; Greenberg S; Schumacher-Klinger A; Rosenthal D; Shalev DE; Hurevich M; Lazarovici P; Hoffman A; Gilon C
    Front Chem; 2020; 8():532577. PubMed ID: 33282822
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Backbone cyclization: A new method for conferring conformational constraint on peptides.
    Gilon C; Halle D; Chorev M; Selinger Z; Byk G
    Biopolymers; 1991 May; 31(6):745-50. PubMed ID: 1718473
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design of peptides, proteins, and peptidomimetics in chi space.
    Hruby VJ; Li G; Haskell-Luevano C; Shenderovich M
    Biopolymers; 1997; 43(3):219-66. PubMed ID: 9277134
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Computational Opportunities and Challenges in Finding Cyclic Peptide Modulators of Protein-Protein Interactions.
    Duffy F; Maheshwari N; Buchete NV; Shields D
    Methods Mol Biol; 2019; 2001():73-95. PubMed ID: 31134568
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of backbone cyclization on PK/PD properties of bioactive peptide-peptoid hybrids: the melanocortin agonist paradigm.
    Ovadia O; Linde Y; Haskell-Luevano C; Dirain ML; Sheynis T; Jelinek R; Gilon C; Hoffman A
    Bioorg Med Chem; 2010 Jan; 18(2):580-9. PubMed ID: 20056544
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Miniaturized proteins: the backbone cyclic proteinomimetic approach.
    Kasher R; Oren DA; Barda Y; Gilon C
    J Mol Biol; 1999 Sep; 292(2):421-9. PubMed ID: 10493885
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transforming conotoxins into cyclotides: Backbone cyclization of P-superfamily conotoxins.
    Akcan M; Clark RJ; Daly NL; Conibear AC; de Faoite A; Heghinian MD; Sahil T; Adams DJ; Marí F; Craik DJ
    Biopolymers; 2015 Nov; 104(6):682-92. PubMed ID: 26172377
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure and Function of AApeptides.
    Bolarinwa O; Nimmagadda A; Su M; Cai J
    Biochemistry; 2017 Jan; 56(3):445-457. PubMed ID: 28029249
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Medicinal chemistry insights into antiviral peptidomimetics.
    Ding D; Xu S; da Silva-Júnior EF; Liu X; Zhan P
    Drug Discov Today; 2023 Mar; 28(3):103468. PubMed ID: 36528280
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Backbone cyclic peptide inhibitors of protein kinase B (PKB/Akt).
    Tal-Gan Y; Hurevich M; Klein S; Ben-Shimon A; Rosenthal D; Hazan C; Shalev DE; Niv MY; Levitzki A; Gilon C
    J Med Chem; 2011 Jul; 54(14):5154-64. PubMed ID: 21650457
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of structural and conformation modifications, including backbone cyclization, of hydrophilic hexapeptides on their intestinal permeability and enzymatic stability.
    Hess S; Ovadia O; Shalev DE; Senderovich H; Qadri B; Yehezkel T; Salitra Y; Sheynis T; Jelinek R; Gilon C; Hoffman A
    J Med Chem; 2007 Nov; 50(24):6201-11. PubMed ID: 17983214
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Novel method for the synthesis of urea backbone cyclic peptides using new Alloc-protected glycine building units.
    Hurevich M; Tal-Gan Y; Klein S; Barda Y; Levitzki A; Gilon C
    J Pept Sci; 2010 Apr; 16(4):178-85. PubMed ID: 20196085
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Virtual screening using combinatorial cyclic peptide libraries reveals protein interfaces readily targetable by cyclic peptides.
    Duffy FJ; O'Donovan D; Devocelle M; Moran N; O'Connell DJ; Shields DC
    J Chem Inf Model; 2015 Mar; 55(3):600-13. PubMed ID: 25668361
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cyclization and Docking Protocol for Cyclic Peptide-Protein Modeling Using HADDOCK2.4.
    Charitou V; van Keulen SC; Bonvin AMJJ
    J Chem Theory Comput; 2022 Jun; 18(6):4027-4040. PubMed ID: 35652781
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Peptide-based inhibitors of protein-protein interactions.
    Wójcik P; Berlicki Ł
    Bioorg Med Chem Lett; 2016 Feb; 26(3):707-713. PubMed ID: 26764190
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A two-component 'double-click' approach to peptide stapling.
    Lau YH; Wu Y; de Andrade P; Galloway WR; Spring DR
    Nat Protoc; 2015 Apr; 10(4):585-94. PubMed ID: 25763835
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cyclic alpha-conotoxin peptidomimetic chimeras as potent GLP-1R agonists.
    Swedberg JE; Schroeder CI; Mitchell JM; Durek T; Fairlie DP; Edmonds DJ; Griffith DA; Ruggeri RB; Derksen DR; Loria PM; Liras S; Price DA; Craik DJ
    Eur J Med Chem; 2015 Oct; 103():175-84. PubMed ID: 26352676
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Therapeutic design of peptide modulators of protein-protein interactions in membranes.
    Stone TA; Deber CM
    Biochim Biophys Acta Biomembr; 2017 Apr; 1859(4):577-585. PubMed ID: 27580024
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Topochemical design of bioactive peptides and peptidomimetics.
    Goodman M; Ro S; Yamazaki T; Spencer JR; Toy A; Huang Z; He Y; Reisine T
    Bioorg Khim; 1992; 18(10-11):1375-93. PubMed ID: 1363715
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Therapeutic peptides and peptidomimetics.
    Kieber-Emmons T; Murali R; Greene MI
    Curr Opin Biotechnol; 1997 Aug; 8(4):435-41. PubMed ID: 9265722
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.