BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 29773581)

  • 1. Dynamic Changes between Two LHCX-Related Energy Quenching Sites Control Diatom Photoacclimation.
    Taddei L; Chukhutsina VU; Lepetit B; Stella GR; Bassi R; van Amerongen H; Bouly JP; Jaubert M; Finazzi G; Falciatore A
    Plant Physiol; 2018 Jul; 177(3):953-965. PubMed ID: 29773581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The diatom Phaeodactylum tricornutum adjusts nonphotochemical fluorescence quenching capacity in response to dynamic light via fine-tuned Lhcx and xanthophyll cycle pigment synthesis.
    Lepetit B; Gélin G; Lepetit M; Sturm S; Vugrinec S; Rogato A; Kroth PG; Falciatore A; Lavaud J
    New Phytol; 2017 Apr; 214(1):205-218. PubMed ID: 27870063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detachment of the fucoxanthin chlorophyll a/c binding protein (FCP) antenna is not involved in the acclimative regulation of photoprotection in the pennate diatom Phaeodactylum tricornutum.
    Giovagnetti V; Ruban AV
    Biochim Biophys Acta Bioenerg; 2017 Mar; 1858(3):218-230. PubMed ID: 27989819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multisignal control of expression of the LHCX protein family in the marine diatom Phaeodactylum tricornutum.
    Taddei L; Stella GR; Rogato A; Bailleul B; Fortunato AE; Annunziata R; Sanges R; Thaler M; Lepetit B; Lavaud J; Jaubert M; Finazzi G; Bouly JP; Falciatore A
    J Exp Bot; 2016 Jun; 67(13):3939-51. PubMed ID: 27225826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of sequence motifs in Lhcx proteins that confer qE-based photoprotection in the diatom Phaeodactylum tricornutum.
    Buck JM; Kroth PG; Lepetit B
    Plant J; 2021 Dec; 108(6):1721-1734. PubMed ID: 34651379
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid regulation of excitation energy in two pennate diatoms from contrasting light climates.
    Derks AK; Bruce D
    Photosynth Res; 2018 Nov; 138(2):149-165. PubMed ID: 30008155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High light acclimation in the secondary plastids containing diatom Phaeodactylum tricornutum is triggered by the redox state of the plastoquinone pool.
    Lepetit B; Sturm S; Rogato A; Gruber A; Sachse M; Falciatore A; Kroth PG; Lavaud J
    Plant Physiol; 2013 Feb; 161(2):853-65. PubMed ID: 23209128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy dissipation pathways in Photosystem 2 of the diatom, Phaeodactylum tricornutum, under high-light conditions.
    Kuzminov FI; Gorbunov MY
    Photosynth Res; 2016 Feb; 127(2):219-35. PubMed ID: 26220363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemical and molecular properties of LHCX1, the essential regulator of dynamic photoprotection in diatoms.
    Giovagnetti V; Jaubert M; Shukla MK; Ungerer P; Bouly JP; Falciatore A; Ruban AV
    Plant Physiol; 2022 Jan; 188(1):509-525. PubMed ID: 34595530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lhcx proteins provide photoprotection via thermal dissipation of absorbed light in the diatom Phaeodactylum tricornutum.
    Buck JM; Sherman J; Bártulos CR; Serif M; Halder M; Henkel J; Falciatore A; Lavaud J; Gorbunov MY; Kroth PG; Falkowski PG; Lepetit B
    Nat Commun; 2019 Sep; 10(1):4167. PubMed ID: 31519883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrafast fluorescence study on the location and mechanism of non-photochemical quenching in diatoms.
    Miloslavina Y; Grouneva I; Lambrev PH; Lepetit B; Goss R; Wilhelm C; Holzwarth AR
    Biochim Biophys Acta; 2009 Oct; 1787(10):1189-97. PubMed ID: 19486881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural features of the diatom photosystem II-light-harvesting antenna complex.
    Wang W; Zhao S; Pi X; Kuang T; Sui SF; Shen JR
    FEBS J; 2020 Jun; 287(11):2191-2200. PubMed ID: 31854056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. LHCSR3 is a nonphotochemical quencher of both photosystems in
    Girolomoni L; Cazzaniga S; Pinnola A; Perozeni F; Ballottari M; Bassi R
    Proc Natl Acad Sci U S A; 2019 Mar; 116(10):4212-4217. PubMed ID: 30782831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular basis of chromatic adaptation in pennate diatom Phaeodactylum tricornutum.
    Herbstová M; Bína D; Koník P; Gardian Z; Vácha F; Litvín R
    Biochim Biophys Acta; 2015; 1847(6-7):534-43. PubMed ID: 25748970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of the diadinoxanthin pool size on photoprotection in the marine planktonic diatom Phaeodactylum tricornutum.
    Lavaud J; Rousseau B; van Gorkom HJ; Etienne AL
    Plant Physiol; 2002 Jul; 129(3):1398-406. PubMed ID: 12114593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arabidopsis plants lacking PsbS protein possess photoprotective energy dissipation.
    Johnson MP; Ruban AV
    Plant J; 2010 Jan; 61(2):283-9. PubMed ID: 19843315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution and regulation of Bigelowiella natans light-harvesting antenna system.
    A D Neilson J; Rangsrikitphoti P; Durnford DG
    J Plant Physiol; 2017 Oct; 217():68-76. PubMed ID: 28619535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NPQ
    Tietz S; Hall CC; Cruz JA; Kramer DM
    Plant Cell Environ; 2017 Aug; 40(8):1243-1255. PubMed ID: 28699261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodiversity of NPQ.
    Goss R; Lepetit B
    J Plant Physiol; 2015 Jan; 172():13-32. PubMed ID: 24854581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impaired photoprotection in Phaeodactylum tricornutum KEA3 mutants reveals the proton regulatory circuit of diatoms light acclimation.
    Seydoux C; Storti M; Giovagnetti V; Matuszyńska A; Guglielmino E; Zhao X; Giustini C; Pan Y; Blommaert L; Angulo J; Ruban AV; Hu H; Bailleul B; Courtois F; Allorent G; Finazzi G
    New Phytol; 2022 Apr; 234(2):578-591. PubMed ID: 35092009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.