These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 29773719)

  • 21. Erratum: "Two-structure thermodynamics for the TIP4P/2005 model of water covering supercooled and deeply stretched regions" [J. Chem. Phys. 146, 034502 (2017)].
    Biddle JW; Singh RS; Sparano EM; Ricci F; González MA; Valeriani C; Abascal JLF; Debenedetti PG; Anisimov MA; Caupin F
    J Chem Phys; 2018 Feb; 148(6):069901. PubMed ID: 29448788
    [No Abstract]   [Full Text] [Related]  

  • 22. Absence of the density minimum of supercooled water in hydrophobic confinement.
    Zhang Y; Liu KH; Lagi M; Liu D; Littrell KC; Mou CY; Chen SH
    J Phys Chem B; 2009 Apr; 113(15):5007-10. PubMed ID: 19317391
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thermodynamic and FTIR studies of supercooled water confined to exterior and interior of mesoporous MCM-41.
    Kittaka S; Sou K; Yamaguchi T; Tozaki K
    Phys Chem Chem Phys; 2009 Oct; 11(38):8538-43. PubMed ID: 19774285
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fragile-to-strong crossover coupled to the liquid-liquid transition in hydrophobic solutions.
    Corradini D; Gallo P; Buldyrev SV; Stanley HE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051503. PubMed ID: 23004763
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comment on "Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solution: A critical review, published by Tran et al. [Water Research 120, 2017, 88-116]".
    Kopinke FD; Georgi A; Goss KU
    Water Res; 2018 Feb; 129():520-521. PubMed ID: 29037511
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Two-state thermodynamics of the ST2 model for supercooled water.
    Holten V; Palmer JC; Poole PH; Debenedetti PG; Anisimov MA
    J Chem Phys; 2014 Mar; 140(10):104502. PubMed ID: 24628177
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dynamics of supercooled water in confined geometry.
    Bergman R; Swenson J
    Nature; 2000 Jan; 403(6767):283-6. PubMed ID: 10659841
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evidence of deeply supercooled liquid water in interaction with LiCl.
    Souda R
    J Phys Chem B; 2006 Aug; 110(30):14787-91. PubMed ID: 16869587
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural study of low concentration LiCl aqueous solutions in the liquid, supercooled, and hyperquenched glassy states.
    Winkel K; Seidl M; Loerting T; Bove LE; Imberti S; Molinero V; Bruni F; Mancinelli R; Ricci MA
    J Chem Phys; 2011 Jan; 134(2):024515. PubMed ID: 21241128
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermodynamic geometry of supercooled water.
    May HO; Mausbach P; Ruppeiner G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):032141. PubMed ID: 25871088
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Widom line and dynamical crossovers as routes to understand supercritical water.
    Gallo P; Corradini D; Rovere M
    Nat Commun; 2014 Dec; 5():5806. PubMed ID: 25512253
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Some thermodynamical aspects of protein hydration water.
    Mallamace F; Corsaro C; Mallamace D; Vasi S; Vasi C; Stanley HE; Chen SH
    J Chem Phys; 2015 Jun; 142(21):215103. PubMed ID: 26049527
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comment on "The nucleation behavior of supercooled water vapor in helium" [J. Chem. Phys. 117, 5647 (2002)].
    Labetski DG; Holten V; Van Dongen ME
    J Chem Phys; 2004 Apr; 120(13):6314. PubMed ID: 15267520
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of concentration on the thermodynamics of sodium chloride aqueous solutions in the supercooled regime.
    Corradini D; Gallo P; Rovere M
    J Chem Phys; 2009 Apr; 130(15):154511. PubMed ID: 19388763
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermodynamic and dynamic anomalies in a one-dimensional lattice model of liquid water.
    Barbosa MA; Barbosa FV; Oliveira FA
    J Chem Phys; 2011 Jan; 134(2):024511. PubMed ID: 21241124
    [TBL] [Abstract][Full Text] [Related]  

  • 36. On the probability of nucleation at the surface of freezing drops.
    Turner GW; Bartell LS
    J Phys Chem A; 2005 Aug; 109(31):6877-9. PubMed ID: 16834044
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermodynamic properties of liquid water from a polarizable intermolecular potential.
    Yigzawe TM; Sadus RJ
    J Chem Phys; 2013 Jan; 138(4):044503. PubMed ID: 23387601
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Growth rate of crystalline ice and the diffusivity of supercooled water from 126 to 262 K.
    Xu Y; Petrik NG; Smith RS; Kay BD; Kimmel GA
    Proc Natl Acad Sci U S A; 2016 Dec; 113(52):14921-14925. PubMed ID: 27956609
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Correlation between thermodynamic anomalies and pathways of ice nucleation in supercooled water.
    Singh RS; Bagchi B
    J Chem Phys; 2014 Apr; 140(16):164503. PubMed ID: 24784283
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reply to "Comment on 'Spontaneous liquid-liquid phase separation of water' ".
    Yagasaki T; Matsumoto M; Tanaka H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):016302. PubMed ID: 25679745
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.