BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 29773831)

  • 1. DNAJC17 is localized in nuclear speckles and interacts with splicing machinery components.
    Pascarella A; Ferrandino G; Credendino SC; Moccia C; D'Angelo F; Miranda B; D'Ambrosio C; Bielli P; Spadaro O; Ceccarelli M; Scaloni A; Sette C; De Felice M; De Vita G; Amendola E
    Sci Rep; 2018 May; 8(1):7794. PubMed ID: 29773831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-resolution melting analysis (HRM) for mutational screening of Dnajc17 gene in patients affected by thyroid dysgenesis.
    Nettore IC; Desiderio S; De Nisco E; Cacace V; Albano L; Improda N; Ungaro P; Salerno M; Colao A; Macchia PE
    J Endocrinol Invest; 2018 Jun; 41(6):711-717. PubMed ID: 29159607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A locus on mouse chromosome 2 is involved in susceptibility to congenital hypothyroidism and contains an essential gene expressed in thyroid.
    Amendola E; Sanges R; Galvan A; Dathan N; Manenti G; Ferrandino G; Alvino FM; Di Palma T; Scarfò M; Zannini M; Dragani TA; De Felice M; Di Lauro R
    Endocrinology; 2010 Apr; 151(4):1948-58. PubMed ID: 20160132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The essential chaperone DNAJC17 activates HSP70 to coordinate RNA splicing and G2-M progression.
    Allegakoen DV; Kwong K; Morales J; Bivona TG; Sabnis AJ
    bioRxiv; 2023 Oct; ():. PubMed ID: 37961102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular anatomy of a speckle.
    Hall LL; Smith KP; Byron M; Lawrence JB
    Anat Rec A Discov Mol Cell Evol Biol; 2006 Jul; 288(7):664-75. PubMed ID: 16761280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overexpression of a soybean nuclear localized type-III DnaJ domain-containing HSP40 reveals its roles in cell death and disease resistance.
    Liu JZ; Whitham SA
    Plant J; 2013 Apr; 74(1):110-21. PubMed ID: 23289813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional splicing network reveals extensive regulatory potential of the core spliceosomal machinery.
    Papasaikas P; Tejedor JR; Vigevani L; Valcárcel J
    Mol Cell; 2015 Jan; 57(1):7-22. PubMed ID: 25482510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The SR splicing factors ASF/SF2 and SC35 have antagonistic effects on intronic enhancer-dependent splicing of the beta-tropomyosin alternative exon 6A.
    Gallego ME; Gattoni R; Stévenin J; Marie J; Expert-Bezançon A
    EMBO J; 1997 Apr; 16(7):1772-84. PubMed ID: 9130721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CIR, a corepressor of CBF1, binds to PAP-1 and effects alternative splicing.
    Maita H; Kitaura H; Ariga H; Iguchi-Ariga SM
    Exp Cell Res; 2005 Feb; 303(2):375-87. PubMed ID: 15652350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SC35-mediated reconstitution of splicing in U2AF-depleted nuclear extract.
    MacMillan AM; McCaw PS; Crispino JD; Sharp PA
    Proc Natl Acad Sci U S A; 1997 Jan; 94(1):133-6. PubMed ID: 8990173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Over-expression of SR-cyclophilin, an interaction partner of nuclear pinin, releases SR family splicing factors from nuclear speckles.
    Lin CL; Leu S; Lu MC; Ouyang P
    Biochem Biophys Res Commun; 2004 Aug; 321(3):638-47. PubMed ID: 15358154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochemical and proteomic analysis of spliceosome factors interacting with intron-1 of human papillomavirus type-16.
    Martínez-Salazar M; López-Urrutia E; Arechaga-Ocampo E; Bonilla-Moreno R; Martínez-Castillo M; Díaz-Hernández J; Del Moral-Hernández O; Cedillo-Barrón L; Martines-Juarez V; De Nova-Ocampo M; Valdes J; Berumen J; Villegas-Sepúlveda N
    J Proteomics; 2014 Dec; 111():184-97. PubMed ID: 25108200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of alternative pre-mRNA splicing in vivo by pinin.
    Wang P; Lou PJ; Leu S; Ouyang P
    Biochem Biophys Res Commun; 2002 Jun; 294(2):448-55. PubMed ID: 12051732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nuclear staining for the small heat shock protein alphaB-crystallin colocalizes with splicing factor SC35.
    van Rijk AE; Stege GJ; Bennink EJ; May A; Bloemendal H
    Eur J Cell Biol; 2003 Jul; 82(7):361-8. PubMed ID: 12924631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. WT1 interacts with the splicing protein RBM4 and regulates its ability to modulate alternative splicing in vivo.
    Markus MA; Heinrich B; Raitskin O; Adams DJ; Mangs H; Goy C; Ladomery M; Sperling R; Stamm S; Morris BJ
    Exp Cell Res; 2006 Oct; 312(17):3379-88. PubMed ID: 16934801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nuclear pre-mRNA compartmentalization: trafficking of released transcripts to splicing factor reservoirs.
    Melcák I; Cermanová S; Jirsová K; Koberna K; Malínský J; Raska I
    Mol Biol Cell; 2000 Feb; 11(2):497-510. PubMed ID: 10679009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prp40 pre-mRNA processing factor 40 homolog B (PRPF40B) associates with SF1 and U2AF65 and modulates alternative pre-mRNA splicing in vivo.
    Becerra S; Montes M; Hernández-Munain C; Suñé C
    RNA; 2015 Mar; 21(3):438-57. PubMed ID: 25605964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. C3G dynamically associates with nuclear speckles and regulates mRNA splicing.
    Shakyawar DK; Muralikrishna B; Radha V
    Mol Biol Cell; 2018 May; 29(9):1111-1124. PubMed ID: 29496966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation-induced cytidine deaminase (AID) is localized to subnuclear domains enriched in splicing factors.
    Hu Y; Ericsson I; Doseth B; Liabakk NB; Krokan HE; Kavli B
    Exp Cell Res; 2014 Mar; 322(1):178-92. PubMed ID: 24434356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PSKH1, a novel splice factor compartment-associated serine kinase.
    Brede G; Solheim J; Prydz H
    Nucleic Acids Res; 2002 Dec; 30(23):5301-9. PubMed ID: 12466556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.