These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 29773844)
1. Identification of differentially accumulated proteins involved in regulating independent and combined osmosis and cadmium stress response in Brachypodium seedling roots. Chen Z; Zhu D; Wu J; Cheng Z; Yan X; Deng X; Yan Y Sci Rep; 2018 May; 8(1):7790. PubMed ID: 29773844 [TBL] [Abstract][Full Text] [Related]
2. Integrated physiological and proteomic analysis reveals underlying response and defense mechanisms of Brachypodium distachyon seedling leaves under osmotic stress, cadmium and their combined stresses. Cheng ZW; Chen ZY; Yan X; Bian YW; Deng X; Yan YM J Proteomics; 2018 Jan; 170():1-13. PubMed ID: 28986270 [TBL] [Abstract][Full Text] [Related]
3. Integrative proteome analysis of Brachypodium distachyon roots and leaves reveals a synergetic responsive network under H2O2 stress. Bian YW; Lv DW; Cheng ZW; Gu AQ; Cao H; Yan YM J Proteomics; 2015 Oct; 128():388-402. PubMed ID: 26344133 [TBL] [Abstract][Full Text] [Related]
4. Integrated proteomic analysis of Brachypodium distachyon roots and leaves reveals a synergistic network in the response to drought stress and recovery. Bian Y; Deng X; Yan X; Zhou J; Yuan L; Yan Y Sci Rep; 2017 Apr; 7():46183. PubMed ID: 28387352 [TBL] [Abstract][Full Text] [Related]
5. Dynamic Phosphoproteome Analysis of Seedling Leaves in Brachypodium distachyon L. Reveals Central Phosphorylated Proteins Involved in the Drought Stress Response. Yuan LL; Zhang M; Yan X; Bian YW; Zhen SM; Yan YM Sci Rep; 2016 Oct; 6():35280. PubMed ID: 27748408 [TBL] [Abstract][Full Text] [Related]
6. Integrated physiological and chloroplast proteome analysis of wheat seedling leaves under salt and osmotic stresses. Zhu D; Luo F; Zou R; Liu J; Yan Y J Proteomics; 2021 Mar; 234():104097. PubMed ID: 33401000 [TBL] [Abstract][Full Text] [Related]
7. Co-expression network analysis of the transcriptomes of rice roots exposed to various cadmium stresses reveals universal cadmium-responsive genes. Tan M; Cheng D; Yang Y; Zhang G; Qin M; Chen J; Chen Y; Jiang M BMC Plant Biol; 2017 Nov; 17(1):194. PubMed ID: 29115926 [TBL] [Abstract][Full Text] [Related]
8. Dissecting Root Proteome Changes Reveals New Insight into Cadmium Stress Response in Radish (Raphanus sativus L.). Xu L; Wang Y; Zhang F; Tang M; Chen Y; Wang J; Karanja BK; Luo X; Zhang W; Liu L Plant Cell Physiol; 2017 Nov; 58(11):1901-1913. PubMed ID: 29016946 [TBL] [Abstract][Full Text] [Related]
9. Genes involved in mRNA surveillance are induced in Brachypodium distachyon under cadmium toxicity. Aksoy E; Uncu AT; Filiz E; Orman Ş; Çetin D; Akbudak MA Mol Biol Rep; 2022 Jun; 49(6):5303-5313. PubMed ID: 34812999 [TBL] [Abstract][Full Text] [Related]
10. Comparative proteomics analysis of the root apoplasts of rice seedlings in response to hydrogen peroxide. Zhou L; Bokhari SA; Dong CJ; Liu JY PLoS One; 2011 Feb; 6(2):e16723. PubMed ID: 21347307 [TBL] [Abstract][Full Text] [Related]
11. Large-scale phosphoproteome analysis in seedling leaves of Brachypodium distachyon L. Lv DW; Li X; Zhang M; Gu AQ; Zhen SM; Wang C; Li XH; Yan YM BMC Genomics; 2014 May; 15(1):375. PubMed ID: 24885693 [TBL] [Abstract][Full Text] [Related]
12. Systematic analysis of the G-box Factor 14-3-3 gene family and functional characterization of GF14a in Brachypodium distachyon. Yang L; You J; Wang Y; Li J; Quan W; Yin M; Wang Q; Chan Z Plant Physiol Biochem; 2017 Aug; 117():1-11. PubMed ID: 28575641 [TBL] [Abstract][Full Text] [Related]
13. Genome-wide identification, phylogeny and expression analysis of AP2/ERF transcription factors family in Brachypodium distachyon. Cui L; Feng K; Wang M; Wang M; Deng P; Song W; Nie X BMC Genomics; 2016 Aug; 17(1):636. PubMed ID: 27527343 [TBL] [Abstract][Full Text] [Related]
14. Molecular Characterization and Expression Profiling of NAC Transcription Factors in Brachypodium distachyon L. Zhu G; Chen G; Zhu J; Zhu Y; Lu X; Li X; Hu Y; Yan Y PLoS One; 2015; 10(10):e0139794. PubMed ID: 26444425 [TBL] [Abstract][Full Text] [Related]
15. Time-dependent leaf proteome alterations of Brachypodium distachyon in response to drought stress. Tatli O; Sogutmaz Ozdemir B; Dinler Doganay G Plant Mol Biol; 2017 Aug; 94(6):609-623. PubMed ID: 28647905 [TBL] [Abstract][Full Text] [Related]
16. Short term signaling responses in roots of young soybean seedlings exposed to cadmium stress. Chmielowska-Bąk J; Lefèvre I; Lutts S; Deckert J J Plant Physiol; 2013 Dec; 170(18):1585-94. PubMed ID: 23942356 [TBL] [Abstract][Full Text] [Related]
17. Holm oak proteomic response to water limitation at seedling establishment stage reveals specific changes in different plant parts as well as interaction between roots and cotyledons. Simova-Stoilova LP; López-Hidalgo C; Sanchez-Lucas R; Valero-Galvan J; Romero-Rodríguez C; Jorrin-Novo JV Plant Sci; 2018 Nov; 276():1-13. PubMed ID: 30348307 [TBL] [Abstract][Full Text] [Related]
18. Expression patterns of members of the ethylene signaling-related gene families in response to dehydration stresses in cassava. Ren MY; Feng RJ; Shi HR; Lu LF; Yun TY; Peng M; Guan X; Zhang H; Wang JY; Zhang XY; Li CL; Chen YJ; He P; Zhang YD; Xie JH PLoS One; 2017; 12(5):e0177621. PubMed ID: 28542282 [TBL] [Abstract][Full Text] [Related]
19. Molecular characterization and expression profiling of the protein disulfide isomerase gene family in Brachypodium distachyon L. Zhu C; Luo N; He M; Chen G; Zhu J; Yin G; Li X; Hu Y; Li J; Yan Y PLoS One; 2014; 9(4):e94704. PubMed ID: 24747843 [TBL] [Abstract][Full Text] [Related]
20. Genome-wide analysis of the Brachypodium distachyon (L.) P. Beauv. Hsp90 gene family reveals molecular evolution and expression profiling under drought and salt stresses. Zhang M; Shen Z; Meng G; Lu Y; Wang Y PLoS One; 2017; 12(12):e0189187. PubMed ID: 29216330 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]