These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 29774037)

  • 1. Plant-Sediment Interactions in Salt Marshes - An Optode Imaging Study of O
    Koop-Jakobsen K; Mueller P; Meier RJ; Liebsch G; Jensen K
    Front Plant Sci; 2018; 9():541. PubMed ID: 29774037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Survey of sediment oxygenation in rhizospheres of the saltmarsh grass - Spartina anglica.
    Koop-Jakobsen K; Fischer J; Wenzhöfer F
    Sci Total Environ; 2017 Jul; 589():191-199. PubMed ID: 28262356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plant-Mediated Rhizosphere Oxygenation in the Native Invasive Salt Marsh Grass
    Koop-Jakobsen K; Meier RJ; Mueller P
    Front Plant Sci; 2021; 12():669751. PubMed ID: 34177984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of oxygen and carbon dioxide in rhizospheres of Lobelia dortmanna - a planar optode study of belowground gas exchange between plants and sediment.
    Lenzewski N; Mueller P; Meier RJ; Liebsch G; Jensen K; Koop-Jakobsen K
    New Phytol; 2018 Apr; 218(1):131-141. PubMed ID: 29314005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitrogen transformations in constructed wetlands: A closer look at plant-soil interactions using chemical imaging.
    Nyer SC; Volkenborn N; Aller RC; Graffam M; Zhu Q; Price RE
    Sci Total Environ; 2022 Apr; 816():151560. PubMed ID: 34785218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. O
    Larsen M; Santner J; Oburger E; Wenzel WW; Glud RN
    Plant Soil; 2015; 390(1-2):279-292. PubMed ID: 26166902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative imaging of radial oxygen loss from Valisneria spiralis roots with a fluorescent planar optode.
    Han C; Ren J; Tang H; Xu D; Xie X
    Sci Total Environ; 2016 Nov; 569-570():1232-1240. PubMed ID: 27387799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. O
    Li C; Ding S; Ma X; Chen M; Zhong Z; Zhang Y; Ren M; Zhang M; Yang L; Rong N; Wang Y
    Environ Pollut; 2021 Oct; 287():117193. PubMed ID: 33989948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subsurface aeration of tidal wetland soils: Root-system structure and aerenchyma connectivity in Spartina (Poaceae).
    Granse D; Titschack J; Ainouche M; Jensen K; Koop-Jakobsen K
    Sci Total Environ; 2022 Jan; 802():149771. PubMed ID: 34525732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative imaging of rhizosphere pH and CO2 dynamics with planar optodes.
    Blossfeld S; Schreiber CM; Liebsch G; Kuhn AJ; Hinsinger P
    Ann Bot; 2013 Jul; 112(2):267-76. PubMed ID: 23532048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical sensor nanoparticles in artificial sediments--a new tool to visualize O2 dynamics around the rhizome and roots of seagrasses.
    Koren K; Brodersen KE; Jakobsen SL; Kühl M
    Environ Sci Technol; 2015 Feb; 49(4):2286-92. PubMed ID: 25610948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoparticle-based measurements of pH and O2 dynamics in the rhizosphere of Zostera marina L.: effects of temperature elevation and light-dark transitions.
    Elgetti Brodersen K; Koren K; Lichtenberg M; Kühl M
    Plant Cell Environ; 2016 Jul; 39(7):1619-30. PubMed ID: 27003238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Seagrass-mediated rhizosphere redox gradients are linked with ammonium accumulation driven by diazotrophs.
    Brodersen KE; Mosshammer M; Bittner MJ; Hallstrøm S; Santner J; Riemann L; Kühl M
    Microbiol Spectr; 2024 Apr; 12(4):e0333523. PubMed ID: 38426746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disentangling who is who during rhizosphere acidification in root interactions: combining fluorescence with optode techniques.
    Faget M; Blossfeld S; von Gillhaussen P; Schurr U; Temperton VM
    Front Plant Sci; 2013; 4():392. PubMed ID: 24137168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The core root microbiome of Spartina alterniflora is predominated by sulfur-oxidizing and sulfate-reducing bacteria in Georgia salt marshes, USA.
    Rolando JL; Kolton M; Song T; Kostka JE
    Microbiome; 2022 Mar; 10(1):37. PubMed ID: 35227326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorus removal from sediments by Potamogeton crispus: New high-resolution in-situ evidence for rhizosphere assimilation and oxidization-induced retention.
    Yuan H; Cai Y; Yang Z; Li Q; Liu E; Yin H
    J Environ Sci (China); 2021 Nov; 109():181-192. PubMed ID: 34607667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxygen loss from Spartina alterniflora and its relationship to salt marsh oxygen balance.
    Howes BL; Teal JM
    Oecologia; 1994 May; 97(4):431-438. PubMed ID: 28313730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Root-induced cycling of lead in salt marsh sediments.
    Sundby B; Caetano M; Vale C; Gobeil C; George LW; Nuzzio DB
    Environ Sci Technol; 2005 Apr; 39(7):2080-6. PubMed ID: 15871240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial processes associated with roots of bulbous rush coated with iron plaques.
    Küsel K; Chabbi A; Trinkwalter T
    Microb Ecol; 2003 Oct; 46(3):302-11. PubMed ID: 14502410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Inundation, Nutrient Availability and Plant Species Diversity on Fine Root Mass and Morphology Across a Saltmarsh Flooding Gradient.
    Redelstein R; Dinter T; Hertel D; Leuschner C
    Front Plant Sci; 2018; 9():98. PubMed ID: 29467778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.