These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 29774217)

  • 1. Effective Network Size Predicted From Simulations of Pathogen Outbreaks Through Social Networks Provides a Novel Measure of Structure-Standardized Group Size.
    McCabe CM; Nunn CL
    Front Vet Sci; 2018; 5():71. PubMed ID: 29774217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic vs. static social networks in models of parasite transmission: predicting Cryptosporidium spread in wild lemurs.
    Springer A; Kappeler PM; Nunn CL
    J Anim Ecol; 2017 May; 86(3):419-433. PubMed ID: 27973681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Network analyses to quantify effects of host movement in multilevel disease transmission models using foot and mouth disease in Cameroon as a case study.
    Pomeroy LW; Kim H; Xiao N; Moritz M; Garabed R
    PLoS Comput Biol; 2019 Aug; 15(8):e1007184. PubMed ID: 31465448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Network analyses of transhumance movements and simulations of foot-and-mouth disease virus transmission among mobile livestock in Cameroon.
    Pomeroy LW; Moritz M; Garabed R
    Epidemics; 2019 Sep; 28():100334. PubMed ID: 31387783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient vaccination strategies for epidemic control using network information.
    Yang Y; McKhann A; Chen S; Harling G; Onnela JP
    Epidemics; 2019 Jun; 27():115-122. PubMed ID: 30878314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measuring the robustness of network community structure using assortativity.
    Shizuka D; Farine DR
    Anim Behav; 2016 Feb; 112():237-246. PubMed ID: 26949266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The dynamics of transmission and the dynamics of networks.
    Farine D
    J Anim Ecol; 2017 May; 86(3):415-418. PubMed ID: 28394028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling infection transmission in primate networks to predict centrality-based risk.
    Romano V; Duboscq J; Sarabian C; Thomas E; Sueur C; MacIntosh AJ
    Am J Primatol; 2016 Jul; 78(7):767-79. PubMed ID: 26954727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Raccoon contact networks predict seasonal susceptibility to rabies outbreaks and limitations of vaccination.
    Reynolds JJ; Hirsch BT; Gehrt SD; Craft ME
    J Anim Ecol; 2015 Nov; 84(6):1720-31. PubMed ID: 26172427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Network-based analysis of stochastic SIR epidemic models with random and proportionate mixing.
    Kenah E; Robins JM
    J Theor Biol; 2007 Dec; 249(4):706-22. PubMed ID: 17950362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Second look at the spread of epidemics on networks.
    Kenah E; Robins JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 2):036113. PubMed ID: 17930312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Infectious disease and group size: more than just a numbers game.
    Nunn CL; Jordán F; McCabe CM; Verdolin JL; Fewell JH
    Philos Trans R Soc Lond B Biol Sci; 2015 May; 370(1669):. PubMed ID: 25870397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of effective spreaders in contact networks using dynamical influence.
    Clark RA; Macdonald M
    Appl Netw Sci; 2021; 6(1):5. PubMed ID: 33490367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trade-offs with telemetry-derived contact networks for infectious disease studies in wildlife.
    Gilbertson MLJ; White LA; Craft ME
    Methods Ecol Evol; 2021 Jan; 12(1):76-87. PubMed ID: 33692875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of vaccination strategies for SIR epidemics on random networks incorporating household structure.
    Ball F; Sirl D
    J Math Biol; 2018 Jan; 76(1-2):483-530. PubMed ID: 28634747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disease spreading in complex networks: A numerical study with Principal Component Analysis.
    Schimit PHT; Pereira FH
    Expert Syst Appl; 2018 May; 97():41-50. PubMed ID: 32288338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Social network analysis of wild chimpanzees provides insights for predicting infectious disease risk.
    Rushmore J; Caillaud D; Matamba L; Stumpf RM; Borgatti SP; Altizer S
    J Anim Ecol; 2013 Sep; 82(5):976-86. PubMed ID: 23734782
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.