BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 29774332)

  • 1. Tuning the molecular weight of polymeric amphiphiles as a tool to access micelles with a wide range of enzymatic degradation rates.
    Slor G; Papo N; Hananel U; Amir RJ
    Chem Commun (Camb); 2018 Jun; 54(50):6875-6878. PubMed ID: 29774332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversible Dimerization of Polymeric Amphiphiles Acts as a Molecular Switch of Enzymatic Degradability.
    Rosenbaum I; Avinery R; Harnoy AJ; Slor G; Tirosh E; Hananel U; Beck R; Amir RJ
    Biomacromolecules; 2017 Oct; 18(10):3457-3468. PubMed ID: 28858524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Architectural Change of the Shell-Forming Block from Linear to V-Shaped Accelerates Micellar Disassembly, but Slows the Complete Enzymatic Degradation of the Amphiphiles.
    Segal M; Ozery L; Slor G; Wagle SS; Ehm T; Beck R; Amir RJ
    Biomacromolecules; 2020 Oct; 21(10):4076-4086. PubMed ID: 32833437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using High Molecular Precision to Study Enzymatically Induced Disassembly of Polymeric Nanocarriers: Direct Enzymatic Activation or Equilibrium-Based Degradation?
    Slor G; Amir RJ
    Macromolecules; 2021 Feb; 54(4):1577-1588. PubMed ID: 33642615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Precision and Enzymatic Degradation: From Readily to Undegradable Polymeric Micelles by Minor Structural Changes.
    Segal M; Avinery R; Buzhor M; Shaharabani R; Harnoy AJ; Tirosh E; Beck R; Amir RJ
    J Am Chem Soc; 2017 Jan; 139(2):803-810. PubMed ID: 27990807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stimuli-Induced Architectural Transition as a Tool for Controlling the Enzymatic Degradability of Polymeric Micelles.
    Slor G; Tevet S; Amir RJ
    ACS Polym Au; 2022 Oct; 2(5):380-386. PubMed ID: 36855583
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micellar Stability in Biological Media Dictates Internalization in Living Cells.
    Feiner-Gracia N; Buzhor M; Fuentes E; Pujals S; Amir RJ; Albertazzi L
    J Am Chem Soc; 2017 Nov; 139(46):16677-16687. PubMed ID: 29076736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Architecture-Based Programming of Polymeric Micelles to Undergo Sequential Mesophase Transitions.
    Rathee P; Edelstein-Pardo N; Netti F; Adler-Abramovich L; Sitt A; Amir RJ
    ACS Macro Lett; 2023 Jun; 12(6):814-820. PubMed ID: 37272912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reversible Interactions of Proteins with Mixed Shell Polymeric Micelles: Tuning the Surface Hydrophobic/Hydrophilic Balance toward Efficient Artificial Chaperones.
    Wang J; Song Y; Sun P; An Y; Zhang Z; Shi L
    Langmuir; 2016 Mar; 32(11):2737-49. PubMed ID: 26948309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Encapsulation and covalent binding of molecular payload in enzymatically activated micellar nanocarriers.
    Rosenbaum I; Harnoy AJ; Tirosh E; Buzhor M; Segal M; Frid L; Shaharabani R; Avinery R; Beck R; Amir RJ
    J Am Chem Soc; 2015 Feb; 137(6):2276-84. PubMed ID: 25607219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring the effect of hydrophilic and hydrophobic structure of grafted polymeric micelles on drug loading.
    Shi C; Sun Y; Wu H; Zhu C; Wei G; Li J; Chan T; Ouyang D; Mao S
    Int J Pharm; 2016 Oct; 512(1):282-291. PubMed ID: 27576669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sugar-based amphiphilic polymers for biomedical applications: from nanocarriers to therapeutics.
    Gu L; Faig A; Abdelhamid D; Uhrich K
    Acc Chem Res; 2014 Oct; 47(10):2867-77. PubMed ID: 25141069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular engineering of polymeric supra-amphiphiles.
    Chang Y; Jiao Y; Symons HE; Xu JF; Faul CFJ; Zhang X
    Chem Soc Rev; 2019 Feb; 48(4):989-1003. PubMed ID: 30681685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polymeric micelles in mucosal drug delivery: Challenges towards clinical translation.
    Sosnik A; Menaker Raskin M
    Biotechnol Adv; 2015 Nov; 33(6 Pt 3):1380-92. PubMed ID: 25597531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-assemblies of amphiphilic homopolymers: synthesis, morphology studies and biomedical applications.
    Zhang J; Liu K; Müllen K; Yin M
    Chem Commun (Camb); 2015 Jul; 51(58):11541-55. PubMed ID: 26073994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrotropic polymer micelles as versatile vehicles for delivery of poorly water-soluble drugs.
    Kim JY; Kim S; Pinal R; Park K
    J Control Release; 2011 May; 152(1):13-20. PubMed ID: 21352878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cooperative macromolecular self-assembly toward polymeric assemblies with multiple and bioactive functions.
    Zhang Z; Ma R; Shi L
    Acc Chem Res; 2014 Apr; 47(4):1426-37. PubMed ID: 24694280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new family of nonionic dendritic amphiphiles displaying unexpected packing parameters in micellar assemblies.
    Trappmann B; Ludwig K; Radowski MR; Shukla A; Mohr A; Rehage H; Böttcher C; Haag R
    J Am Chem Soc; 2010 Aug; 132(32):11119-24. PubMed ID: 20698677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photo-responsive polymeric micelles.
    Huang Y; Dong R; Zhu X; Yan D
    Soft Matter; 2014 Sep; 10(33):6121-38. PubMed ID: 25046479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and self-assembly of DNA-chromophore hybrid amphiphiles.
    Albert SK; Golla M; Thelu HV; Krishnan N; Deepak P; Varghese R
    Org Biomol Chem; 2016 Aug; 14(29):6960-9. PubMed ID: 27241196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.