BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 29774342)

  • 1. The distinct structural preferences of tau protein repeat domains.
    Li X; Dong X; Wei G; Margittai M; Nussinov R; Ma B
    Chem Commun (Camb); 2018 May; 54(45):5700-5703. PubMed ID: 29774342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linkage-dependent contribution of repeat peptides to self-aggregation of three- or four-repeat microtubule-binding domains in tau protein.
    Okuyama K; Nishiura C; Mizushima F; Minoura K; Sumida M; Taniguchi T; Tomoo K; Ishida T
    FEBS J; 2008 Apr; 275(7):1529-1539. PubMed ID: 18312411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How Does Hyperphopsphorylation Promote Tau Aggregation and Modulate Filament Structure and Stability?
    Xu L; Zheng J; Margittai M; Nussinov R; Ma B
    ACS Chem Neurosci; 2016 May; 7(5):565-75. PubMed ID: 26854860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heparin remodels the microtubule-binding repeat R3 of Tau protein towards fibril-prone conformations.
    Dong X; Qi R; Qiao Q; Li X; Li F; Wan J; Zhang Q; Wei G
    Phys Chem Chem Phys; 2021 Sep; 23(36):20406-20418. PubMed ID: 34494046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cross-seeding and conformational selection between three- and four-repeat human Tau proteins.
    Yu X; Luo Y; Dinkel P; Zheng J; Wei G; Margittai M; Nussinov R; Ma B
    J Biol Chem; 2012 Apr; 287(18):14950-9. PubMed ID: 22393063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Possible role of each repeat structure of the microtubule-binding domain of the tau protein in in vitro aggregation.
    Tomoo K; Yao TM; Minoura K; Hiraoka S; Sumida M; Taniguchi T; Ishida T
    J Biochem; 2005 Oct; 138(4):413-23. PubMed ID: 16272135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular Insights into the Differential Effects of Acetylation on the Aggregation of Tau Microtubule-Binding Repeats.
    Zou Y; Guan L; Tan J; Qi B; Sun Y; Huang F; Zhang Q
    J Chem Inf Model; 2024 Apr; 64(8):3386-3399. PubMed ID: 38489841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydration and Dynamics of Full-Length Tau Amyloid Fibrils Investigated by Solid-State Nuclear Magnetic Resonance.
    Dregni AJ; Duan P; Hong M
    Biochemistry; 2020 Jun; 59(24):2237-2248. PubMed ID: 32453948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular Dynamics Simulations of the Tau R3-R4 Domain Monomer in the Bulk Solution and at the Surface of a Lipid Bilayer Model.
    Nguyen PH; Derreumaux P
    J Phys Chem B; 2022 May; 126(18):3431-3438. PubMed ID: 35476504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro 0N4R tau fibrils contain a monomorphic β-sheet core enclosed by dynamically heterogeneous fuzzy coat segments.
    Dregni AJ; Mandala VS; Wu H; Elkins MR; Wang HK; Hung I; DeGrado WF; Hong M
    Proc Natl Acad Sci U S A; 2019 Aug; 116(33):16357-16366. PubMed ID: 31358628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of melatonin binding and destabilizing the protofilament and filament of tau R3-R4 domains revealed by molecular dynamics simulation.
    Zhu L; Gong Y; Lju H; Sun G; Zhang Q; Qian Z
    Phys Chem Chem Phys; 2021 Sep; 23(36):20615-20626. PubMed ID: 34514491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zn
    Jiji AC; Arshad A; Dhanya SR; Shabana PS; Mehjubin CK; Vijayan V
    Chemistry; 2017 Dec; 23(67):16976-16979. PubMed ID: 29044752
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resonance Raman spectroscopic measurements delineate the structural changes that occur during tau fibril formation.
    Ramachandran G; Milán-Garcés EA; Udgaonkar JB; Puranik M
    Biochemistry; 2014 Oct; 53(41):6550-65. PubMed ID: 25284680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidized and phosphorylated synthetic peptides corresponding to the second and third tubulin-binding repeats of the tau protein reveal structural features of paired helical filament assembly.
    Hoffmann R; Dawson NF; Wade JD; Otvös L
    J Pept Res; 1997 Aug; 50(2):132-42. PubMed ID: 9273897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence-coupled CD conformational monitoring of filament formation of tau microtubule-binding repeat domain.
    Mizushima F; Minoura K; Tomoo K; Sumida M; Taniguchi T; Ishida T
    Biochem Biophys Res Commun; 2006 May; 343(3):712-8. PubMed ID: 16563344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics simulations reveal the destabilization mechanism of Alzheimer's disease-related tau R3-R4 Protofilament by norepinephrine.
    Wan J; Gong Y; Xu Z; Dong X; Wei G; Zhang Q
    Biophys Chem; 2021 Apr; 271():106541. PubMed ID: 33515860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inclusion of the C-Terminal Domain in the β-Sheet Core of Heparin-Fibrillized Three-Repeat Tau Protein Revealed by Solid-State Nuclear Magnetic Resonance Spectroscopy.
    Dregni AJ; Wang HK; Wu H; Duan P; Jin J; DeGrado WF; Hong M
    J Am Chem Soc; 2021 May; 143(20):7839-7851. PubMed ID: 33983722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tau R3-R4 Domain Dimer of the Wild Type and Phosphorylated Ser356 Sequences. I. In Solution by Atomistic Simulations.
    Derreumaux P; Man VH; Wang J; Nguyen PH
    J Phys Chem B; 2020 Apr; 124(15):2975-2983. PubMed ID: 32216358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Marked difference between self-aggregations of first and fourth repeat peptides on tau microtubule-binding domain in acidic solution.
    Mizushima F; Minoura K; Tomoo K; Sumida M; Taniguchi T; Ishida T
    J Biochem; 2007 Jul; 142(1):49-54. PubMed ID: 17456500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Misfolding and Self-Assembly Dynamics of Microtubule-Binding Repeats of the Alzheimer-Related Protein Tau.
    He H; Liu Y; Sun Y; Ding F
    J Chem Inf Model; 2021 Jun; 61(6):2916-2925. PubMed ID: 34032430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.