These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

482 related articles for article (PubMed ID: 29774376)

  • 1. Roles of heat shock factor 1 beyond the heat shock response.
    Barna J; Csermely P; Vellai T
    Cell Mol Life Sci; 2018 Aug; 75(16):2897-2916. PubMed ID: 29774376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HSF1Base: A Comprehensive Database of HSF1 (Heat Shock Factor 1) Target Genes.
    Kovács D; Sigmond T; Hotzi B; Bohár B; Fazekas D; Deák V; Vellai T; Barna J
    Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31752429
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monitoring of the Heat Shock Response with a Real-Time Luciferase Reporter.
    Ackerman A; Kijima T; Eguchi T; Prince TL
    Methods Mol Biol; 2023; 2693():1-11. PubMed ID: 37540422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perinuclear mitochondrial clustering, increased ROS levels, and HIF1 are required for the activation of HSF1 by heat stress.
    Agarwal S; Ganesh S
    J Cell Sci; 2020 Jul; 133(13):. PubMed ID: 32503939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Important Role for RPRD1B in the Heat Shock Response.
    Cugusi S; Bajpe PK; Mitter R; Patel H; Stewart A; Svejstrup JQ
    Mol Cell Biol; 2022 Oct; 42(10):e0017322. PubMed ID: 36121223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulatory effect of heat shock transcription factor-1 gene on heat shock proteins and its transcriptional regulation analysis in small abalone Haliotis diversicolor.
    Zhang X; Li Y; Sun Y; Guo M; Feng J; Wang Y; Zhang Z
    BMC Mol Cell Biol; 2020 Nov; 21(1):83. PubMed ID: 33228519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of Hsf1 and the Heat Shock Response.
    Pincus D
    Adv Exp Med Biol; 2020; 1243():41-50. PubMed ID: 32297210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HSF1 is required for cellular adaptation to daily temperature fluctuations.
    Takii R; Fujimoto M; Pandey A; Jaiswal K; Shearwin-Whyatt L; Grutzner F; Nakai A
    Sci Rep; 2024 Sep; 14(1):21361. PubMed ID: 39266731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bidirectional interplay of HSF1 degradation and UPR activation promotes tau hyperphosphorylation.
    Kim E; Sakata K; Liao FF
    PLoS Genet; 2017 Jul; 13(7):e1006849. PubMed ID: 28678786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hormetic Heat Shock Enhances Autophagy through HSF1 in Retinal Pigment Epithelium Cells.
    Amirkavei M; Plastino F; Kvanta A; Kaarniranta K; André H; Koskelainen A
    Cells; 2022 May; 11(11):. PubMed ID: 35681472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hsf1 on a leash - controlling the heat shock response by chaperone titration.
    Masser AE; Ciccarelli M; Andréasson C
    Exp Cell Res; 2020 Nov; 396(1):112246. PubMed ID: 32861670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activity-Regulated Cytoskeleton-Associated Protein (Arc/Arg3.1) is Transiently Expressed after Heat Shock Stress and Suppresses Heat Shock Factor 1.
    Park AY; Park YS; So D; Song IK; Choi JE; Kim HJ; Lee KJ
    Sci Rep; 2019 Feb; 9(1):2592. PubMed ID: 30796345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of HSF1 transcriptional complexes under proteotoxic stress: Mechanisms of heat shock gene transcription involve the stress-induced HSF1 complex formation, changes in chromatin states, and formation of phase-separated condensates: Mechanisms of heat shock gene transcription involve the stress-induced HSF1 complex formation, changes in chromatin states, and formation of phase-separated condensates.
    Fujimoto M; Takii R; Nakai A
    Bioessays; 2023 Jul; 45(7):e2300036. PubMed ID: 37092382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromatin conformation remains stable upon extensive transcriptional changes driven by heat shock.
    Ray J; Munn PR; Vihervaara A; Lewis JJ; Ozer A; Danko CG; Lis JT
    Proc Natl Acad Sci U S A; 2019 Sep; 116(39):19431-19439. PubMed ID: 31506350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic and epigenetic determinants establish a continuum of Hsf1 occupancy and activity across the yeast genome.
    Pincus D; Anandhakumar J; Thiru P; Guertin MJ; Erkine AM; Gross DS
    Mol Biol Cell; 2018 Dec; 29(26):3168-3182. PubMed ID: 30332327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rethinking HSF1 in Stress, Development, and Organismal Health.
    Li J; Labbadia J; Morimoto RI
    Trends Cell Biol; 2017 Dec; 27(12):895-905. PubMed ID: 28890254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HSF1: Primary Factor in Molecular Chaperone Expression and a Major Contributor to Cancer Morbidity.
    Prince TL; Lang BJ; Guerrero-Gimenez ME; Fernandez-Muñoz JM; Ackerman A; Calderwood SK
    Cells; 2020 Apr; 9(4):. PubMed ID: 32331382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monitoring of the Heat Shock Response with a Real-Time Luciferase Reporter.
    Kijima T; Eguchi T; Neckers L; Prince TL
    Methods Mol Biol; 2018; 1709():35-45. PubMed ID: 29177649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heat Shock Factor 1 Prevents Age-Related Hearing Loss by Decreasing Endoplasmic Reticulum Stress.
    Lee YY; Gil ES; Jeong IH; Kim H; Jang JH; Choung YH
    Cells; 2021 Sep; 10(9):. PubMed ID: 34572102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The long noncoding RNA
    Lellahi SM; Rosenlund IA; Hedberg A; Kiær LT; Mikkola I; Knutsen E; Perander M
    J Biol Chem; 2018 Dec; 293(49):18965-18976. PubMed ID: 30305397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.