BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

463 related articles for article (PubMed ID: 29774376)

  • 41. Gambogic acid and gambogenic acid induce a thiol-dependent heat shock response and disrupt the interaction between HSP90 and HSF1 or HSF2.
    Pesonen L; Svartsjö S; Bäck V; de Thonel A; Mezger V; Sabéran-Djoneidi D; Roos-Mattjus P
    Cell Stress Chaperones; 2021 Sep; 26(5):819-833. PubMed ID: 34331200
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Expression of HSF2 decreases in mitosis to enable stress-inducible transcription and cell survival.
    Elsing AN; Aspelin C; Björk JK; Bergman HA; Himanen SV; Kallio MJ; Roos-Mattjus P; Sistonen L
    J Cell Biol; 2014 Sep; 206(6):735-49. PubMed ID: 25202032
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Redox regulation of mammalian heat shock factor 1 is essential for Hsp gene activation and protection from stress.
    Ahn SG; Thiele DJ
    Genes Dev; 2003 Feb; 17(4):516-28. PubMed ID: 12600944
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Crosstalk between HSF1 and HSF2 during the heat shock response in mouse testes.
    Korfanty J; Stokowy T; Widlak P; Gogler-Piglowska A; Handschuh L; Podkowiński J; Vydra N; Naumowicz A; Toma-Jonik A; Widlak W
    Int J Biochem Cell Biol; 2014 Dec; 57():76-83. PubMed ID: 25450459
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Targeted disruption of hsf1 leads to lack of thermotolerance and defines tissue-specific regulation for stress-inducible Hsp molecular chaperones.
    Zhang Y; Huang L; Zhang J; Moskophidis D; Mivechi NF
    J Cell Biochem; 2002; 86(2):376-93. PubMed ID: 12112007
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Novel isoforms of heat shock transcription factor 1, HSF1γα and HSF1γβ, regulate chaperone protein gene transcription.
    Neueder A; Achilli F; Moussaoui S; Bates GP
    J Biol Chem; 2014 Jul; 289(29):19894-906. PubMed ID: 24855652
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Functional diversification of heat shock factors.
    Kovács D; Kovács M; Ahmed S; Barna J
    Biol Futur; 2022 Dec; 73(4):427-439. PubMed ID: 36402935
    [TBL] [Abstract][Full Text] [Related]  

  • 48. RNAi based transcriptome suggests genes potentially regulated by HSF1 in the Pacific oyster Crassostrea gigas under thermal stress.
    Liu Y; Li L; Huang B; Wang W; Zhang G
    BMC Genomics; 2019 Aug; 20(1):639. PubMed ID: 31395030
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The role of heat shock transcription factor 1 in the genome-wide regulation of the mammalian heat shock response.
    Trinklein ND; Murray JI; Hartman SJ; Botstein D; Myers RM
    Mol Biol Cell; 2004 Mar; 15(3):1254-61. PubMed ID: 14668476
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Impact of heat shock transcription factor 1 on global gene expression profiles in cells which induce either cytoprotective or pro-apoptotic response following hyperthermia.
    Kus-Liśkiewicz M; Polańska J; Korfanty J; Olbryt M; Vydra N; Toma A; Widłak W
    BMC Genomics; 2013 Jul; 14():456. PubMed ID: 23834426
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Heat shock factor 1 inhibits the mitochondrial apoptosis pathway by regulating second mitochondria-derived activator of caspase to promote pancreatic tumorigenesis.
    Liang W; Liao Y; Zhang J; Huang Q; Luo W; Yu J; Gong J; Zhou Y; Li X; Tang B; He S; Yang J
    J Exp Clin Cancer Res; 2017 May; 36(1):64. PubMed ID: 28482903
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Reversible phase separation of HSF1 is required for an acute transcriptional response during heat shock.
    Zhang H; Shao S; Zeng Y; Wang X; Qin Y; Ren Q; Xiang S; Wang Y; Xiao J; Sun Y
    Nat Cell Biol; 2022 Mar; 24(3):340-352. PubMed ID: 35256776
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The interactive association between heat shock factor 1 and heat shock proteins in primary myocardial cells subjected to heat stress.
    Tang S; Chen H; Cheng Y; Nasir MA; Kemper N; Bao E
    Int J Mol Med; 2016 Jan; 37(1):56-62. PubMed ID: 26719858
    [TBL] [Abstract][Full Text] [Related]  

  • 54. HSF1 acetylation decreases its transcriptional activity and enhances glucolipotoxicity-induced apoptosis in rat and human beta cells.
    Purwana I; Liu JJ; Portha B; Buteau J
    Diabetologia; 2017 Aug; 60(8):1432-1441. PubMed ID: 28547133
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Genetic inactivation of essential
    Ciccarelli M; Masser AE; Kaimal JM; Planells J; Andréasson C
    Mol Biol Cell; 2023 Sep; 34(10):ar101. PubMed ID: 37467033
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dexamethasone-induced activation of heat shock response ameliorates seizure susceptibility and neuroinflammation in mouse models of Lafora disease.
    Sinha P; Verma B; Ganesh S
    Exp Neurol; 2021 Jun; 340():113656. PubMed ID: 33639210
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Hop depletion reduces HSF1 levels and activity and coincides with reduced stress resilience.
    Chakraborty A; Edkins AL
    Biochem Biophys Res Commun; 2020 Jun; 527(2):440-446. PubMed ID: 32334836
    [TBL] [Abstract][Full Text] [Related]  

  • 58. HSF1 mediated stress response of heavy metals.
    Steurer C; Eder N; Kerschbaum S; Wegrostek C; Gabriel S; Pardo N; Ortner V; Czerny T; Riegel E
    PLoS One; 2018; 13(12):e0209077. PubMed ID: 30566508
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Disruption of heat shock factor 1 reveals an essential role in the ubiquitin proteolytic pathway.
    Pirkkala L; Alastalo TP; Zuo X; Benjamin IJ; Sistonen L
    Mol Cell Biol; 2000 Apr; 20(8):2670-5. PubMed ID: 10733569
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dynamic coalescence of yeast Heat Shock Protein genes bypasses the requirement for actin.
    Rubio LS; Gross DS
    Genetics; 2023 Apr; 223(4):. PubMed ID: 36659814
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.