BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 29774520)

  • 21. Prevalence of parameters of suboptimal scaffold deployment following angiographic guided bioresorbable vascular scaffold implantation in real world practice - an optical coherence tomography analysis.
    Subban V; Sengottuvelu G; Uthayakumaran K; Rajendran R; Janakiraman E; Pakshirajan B; Thenpally JG; Kalidoss L; Victor SM; Kalarickal MS; Ajit MS
    Int J Cardiol; 2016 Oct; 220():32-42. PubMed ID: 27372040
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Overlapping implantation of bioresorbable novolimus-eluting scaffolds: an observational optical coherence tomography study.
    Blachutzik F; Boeder N; Wiebe J; Mattesini A; Dörr O; Most A; Bauer T; Tröbs M; Röther J; Schlundt C; Achenbach S; Hamm C; Nef H
    Heart Vessels; 2017 Jul; 32(7):781-789. PubMed ID: 28004176
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Peri-strut low intensity areas and in-scaffold neointima growth after bioresorbable scaffold implantation in STEMI. A serial optical coherence tomography study.
    Ochijewicz D; Tomaniak M; Kołtowski L; Rdzanek A; Pietrasik A; Proniewska K; Partyka L; Dijsktra J; Huczek Z; Filipiak K; Opolski G; Kochman J
    Int J Cardiol; 2020 Aug; 312():27-32. PubMed ID: 32315682
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optical Coherence Tomography for Coronary Bioresorbable Vascular Scaffold Implantation: A Randomized Controlled Trial.
    Lee SY; Kang DY; Hong SJ; Ahn JM; Ahn CM; Park DW; Kim JS; Kim BK; Ko YG; Choi D; Jang Y; Park SJ; Hong MK
    Circ Cardiovasc Interv; 2020 Jan; 13(1):e008383. PubMed ID: 32525410
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Major coronary evaginations following implantation of bioresorbable vascular scaffolds - Clinical and OCT characteristics.
    Blachutzik F; Achenbach S; Marwan M; Röther J; Tröbs M; Schneider R; Nef H; Weissner M; Schlundt C
    Cardiovasc Revasc Med; 2019 Jun; 20(6):485-491. PubMed ID: 30097188
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Early and late optical coherence tomography findings following everolimus-eluting bioresorbable vascular scaffold implantation in myocardial infarction: a preliminary report.
    Karanasos A; Muramatsu T; Diletti R; Nauta S; Onuma Y; Lenzen M; Nakatani S; Van Mieghem NM; Schultz C; De Jaegere PP; Serruys PW; Zijlstra F; Regar E; van Geuns RJ
    Hellenic J Cardiol; 2015; 56(2):125-35. PubMed ID: 25854441
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Clinical outcomes following bifurcation double-stenting with bioresorbable scaffolds.
    Tanaka A; Latib A; Kawamoto H; Jabbour RJ; Mangieri A; Pagnesi M; Montalto C; Regazzoli D; Ancona M; Chieffo A; Carlino M; Montorfano M; Colombo A
    Catheter Cardiovasc Interv; 2016 Nov; 88(6):854-862. PubMed ID: 27184769
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bioresorbable magnesium scaffold in the treatment of simple coronary bifurcation lesions: The BIFSORB pilot II study.
    Barkholt TØ; Neghabat O; Holck EN; Andreasen LN; Christiansen EH; Holm NR
    Catheter Cardiovasc Interv; 2022 Mar; 99(4):1075-1083. PubMed ID: 34967094
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Clinical utility of optical coherence tomography (OCT) in the optimisation of Absorb bioresorbable vascular scaffold deployment during percutaneous coronary intervention.
    Allahwala UK; Cockburn JA; Shaw E; Figtree GA; Hansen PS; Bhindi R
    EuroIntervention; 2015 Feb; 10(10):1154-9. PubMed ID: 24647105
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A new novolimus-eluting bioresorbable scaffold for large coronary arteries: an OCT study of acute mechanical performance.
    Boeder NF; Koepp T; Dörr O; Bauer T; Mattesini A; Elsässer A; Möllmann H; Blachutzik F; Achenbach S; Ghanem A; Hamm CW; Nef HM
    Int J Cardiol; 2016 Oct; 220():706-10. PubMed ID: 27393853
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optical coherence tomography assessment of incidence, morphological characteristics, and spontaneous healing course of edge dissections following percutaneous coronary intervention with stent implantation in patients with non-ST segment elevation myocardial infarction.
    Antonsen L; Thayssen P; Hansen HS; Junker A; Veien KT; Hansen KN; Hougaard M; Jensen LO
    Int J Cardiol; 2016 Nov; 223():466-474. PubMed ID: 27544607
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Everolimus-eluting bioresorbable vascular scaffolds for treatment of patients presenting with ST-segment elevation myocardial infarction: BVS STEMI first study.
    Diletti R; Karanasos A; Muramatsu T; Nakatani S; Van Mieghem NM; Onuma Y; Nauta ST; Ishibashi Y; Lenzen MJ; Ligthart J; Schultz C; Regar E; de Jaegere PP; Serruys PW; Zijlstra F; van Geuns RJ
    Eur Heart J; 2014 Mar; 35(12):777-86. PubMed ID: 24394380
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of bioresorbable vascular scaffolds in acute coronary syndrome: A two-center, one-year follow-up analysis.
    Iwańczyk S; Hiczkiewicz J; Araszkiewicz A; Łanocha M; Adamczak D; Faron W; Grajek S; Lesiak M
    Cardiol J; 2018; 25(4):479-486. PubMed ID: 29168541
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A next-generation bioresorbable coronary scaffold system: from bench to first clinical evaluation: 6- and 12-month clinical and multimodality imaging results.
    Verheye S; Ormiston JA; Stewart J; Webster M; Sanidas E; Costa R; Costa JR; Chamie D; Abizaid AS; Pinto I; Morrison L; Toyloy S; Bhat V; Yan J; Abizaid A
    JACC Cardiovasc Interv; 2014 Jan; 7(1):89-99. PubMed ID: 24139932
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Predictors of acute scaffold recoil after implantation of the everolimus-eluting bioresorbable scaffold: an optical coherence tomography assessment in native coronary arteries.
    Sato T; Jose J; El-Mawardy M; Sulimov DS; Tölg R; Richardt G; Abdel-Wahab M
    Int J Cardiovasc Imaging; 2017 Feb; 33(2):145-152. PubMed ID: 27761749
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Computed tomography angiography for guiding and follow-up of magnesium-bioresorbable scaffold implantation.
    Opolski MP; Kepka C; Wojakowski W; Witkowski A
    Clin Res Cardiol; 2019 Mar; 108(3):344-346. PubMed ID: 30182164
    [No Abstract]   [Full Text] [Related]  

  • 37. Long-term multimodality imaging follow-up of ST-segment elevation myocardial infarction patients treated with bioresorbable vascular scaffold: advantages and challenges.
    Eriksen E; Neghabat O; Larsen TH; Saeed S; Bleie Ø
    Coron Artery Dis; 2023 Sep; 34(6):415-424. PubMed ID: 37191924
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optical coherence tomography compared with intravascular ultrasound and with angiography to guide coronary stent implantation (ILUMIEN III: OPTIMIZE PCI): a randomised controlled trial.
    Ali ZA; Maehara A; Généreux P; Shlofmitz RA; Fabbiocchi F; Nazif TM; Guagliumi G; Meraj PM; Alfonso F; Samady H; Akasaka T; Carlson EB; Leesar MA; Matsumura M; Ozan MO; Mintz GS; Ben-Yehuda O; Stone GW;
    Lancet; 2016 Nov; 388(10060):2618-2628. PubMed ID: 27806900
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characteristics, Predictors, and Mechanisms of Thrombosis in Coronary Bioresorbable Scaffolds: Differences Between Early and Late Events.
    Gori T; Weissner M; Gönner S; Wendling F; Ullrich H; Ellis S; Anadol R; Polimeni A; Münzel T
    JACC Cardiovasc Interv; 2017 Dec; 10(23):2363-2371. PubMed ID: 29216999
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Innovative invasive management without stent implantation guided by optical coherence tomography in acute coronary syndrome.
    Souteyrand G; Viallard L; Combaret N; Pereira B; Clerfond G; Malcles G; Barber-Chamoux N; Prati F; Motreff P
    Arch Cardiovasc Dis; 2018 Nov; 111(11):666-677. PubMed ID: 29934117
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.